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Article

The Wide Range Assessment of Memory and Learning–
Second Edition (WRAML2; Sheslow & Adams, 2003a) is 
an individually administered test battery designed to assess 
memory ability in children and adults aged 5 to 90 years and 
is widely utilized by neuropsychologists, clinical psycholo-
gists, and school psychologists. The WRAML2 is a major 
structural and conceptual revision of the WRAML (Sheslow 
& Adams, 1990); specifically, the age range for the instru-
ment was extended to be inclusive of adult participants, the 
core battery was reduced from nine subtests to six, and the 
theoretical foundation for the battery was updated.

The WRAML2 is composed of six core subtests that com-
bine to yield three index scores (Verbal Memory, Visual 
Memory, and Attention/Concentration) as well as a full-scale 
global memory composite (General Memory Index [GMI]). 
Additionally, users can elect to administer up to 11 optional 
subtests that can yield additional clinical index scores though 
it should be noted that these indicators were not included in 
the WRAML2 structural validation studies reported in the 
Administration and Technical Manual (Sheslow & Adams, 
2003b). Thus, their potential relationship to the aforemen-
tioned first-order indexes and second-order global composite 

is presently unknown. In terms of clinical interpretation, the 
Technical Manual suggests that users should interpret the 
scores obtained from the WRAML2 in a stepwise fashion 
beginning with the GMI and then proceeding to more spe-
cific measures (e.g., indexes and subtests).

Although users are advised to focus most of their interpre-
tive weight on the GMI, additional consideration of perfor-
mance on the first-order dimensions is encouraged. For 
instance, the Technical Manual suggests that discrepant per-
formance across the scales may be clinically noteworthy  
(p. 67) and base rates for observed differences are reported in 
supplementary tables (Tables A.8-A.9, pp. 217-219). 
Although no evidence is provided to support the use of these 
procedures in clinical practice, it should be noted that discrep-
ant performance on memory indexes such as those provided 
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Abstract
The present study examined the factor structure of the Wide Range Assessment of Memory and Learning–Second Edition 
(WRAML2) core battery with participants from the normative sample aged 9 to 90 years (n = 880) using higher order 
exploratory and confirmatory factor analytic techniques that were not reported in the in the WRAML2 Administration 
and Technical Manual. Exploratory factor analysis results suggested only one factor, whereas confirmatory factor analysis 
results favored the three factors posited by the test authors. Although model fit statistics were equivalent for the oblique, 
indirect hierarchical, and direct hierarchical measurement models, it was determined that the bifactor model best disclosed 
the influence of latent dimensions on WRAML2 manifest variables. In the three-factor bifactor model, the general factor 
accounted for 31% of the total variance and 69% of the common variance, whereas the three first-order factors combined 
accounted for 41% of the total variance and 31% of the common variance. Latent factor reliability coefficients (as 
estimated by ω

h
) indicated that only the general factor was measured with enough precision to warrant confident clinical 

interpretation. Implications for clinical interpretation of WRAML2 scores and the procedures utilized in the development 
of related measures are discussed.
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Figure 1. Implied hierarchical model for the Wide Range Assessment of Memory and Learning–Second Edition (Sheslow & Adams, 
2003a) core battery.

on the WRAML2 has long been noted as a questionable diag-
nostic sign for lateralization difficulties and more focal corti-
cal insults in clinical populations (e.g., Engle & Smith, 2010; 
Loring, Lee, Martin, & Meador, 1989).

Although a series of exploratory and confirmatory factor 
analytic techniques were used to evaluate the internal struc-
ture of the measurement instrument, considerable problems 
remain. Several of these concerns involve the choice of the 
procedures employed for exploratory factor analysis (EFA).

For EFA, the subtest intercorrelation matrix for the entire 
WRAML2 normative sample (N = 1,200) was subjected to 
a principal components analysis (PCA) with an oblique 
rotation (rotation not specified) with a forced extraction 
based on a predicted three-factor structure for the measure-
ment instrument, in spite of the fact that the WRAML2 was 
designed to be atheoretical (Hartman, 2007). Initial results 
indicated that all WRAML2 subtest alignments were salient 
and consistent with the predicted model thus demonstrating 
desired simple structure. These results were later replicated 
when applying the forced three-factor extraction procedure 
to five age groups (5-10, 11-20, 21-40, 41-60, and 61-90) 
spanning the entire normative sample (Tables 7.19 to 7.23). 
Nevertheless, the use of a constrained analytical approach 
in which factor extraction is based on subjective inference 
rather than more robust empirical criteria (e.g., parallel 
analysis, minimum average partials [MAP]) is problematic 
as it is essentially using EFA in a confirmatory context, a 

practice that has been critiqued extensively within the 
empirical literature (Costello & Osborne, 2005; Haig, 2005; 
Mulaik, 1987; Thompson, 2004).

Further degrading the utility of the EFA analyses under-
taken was the choice to examine latent structure via PCA. 
Although these validation procedures have been referred to as 
a factor analysis in both the Technical Manual and profes-
sional literature (e.g., Adams, 2013; Maricle, Miller, & 
Mortimer, 2011; Strauss, Sherman, & Spreen, 2006), PCA is 
not considered to be a factor analytic procedure due to the fact 
that its algorithm differs mathematically from the assump-
tions of the common factor model (Fabrigar & Wegener, 
2012; Gorsuch, 1983). Although it has been argued that there 
are negligible differences between principal components and 
common factor analysis (e.g., Fabrigar, Wegener, MacCallum, 
& Strahan, 1999; Velicer & Jackson, 1990), components anal-
ysis is computed without regard for the influence of latent 
variables and does not discriminate between different dimen-
sions of variance in the manifest variables (e.g., shared and 
unique variance). As a result, the components derived from 
PCA should not be interpreted as reflecting latent dimensions 
such as memory and learning abilities (Bentler & Kano, 1990; 
Preacher & MacCallum, 2003).

It is also unknown why the test authors decided to forgo 
an explication of higher order structure in any meaningful 
way given the implied structure of the test (see Figure 1). 
The test authors correctly employed an oblique rotation 
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under the assumption of correlated factors. Although an 
oblique rotation is necessary, it may not be singularly suf-
ficient and an additional step is required. According to 
Gorsuch (1983), higher order factors are implicit in all 
oblique rotations; consequently, Gorsuch recommended 
that second-order factors be extracted and examined. 
Unfortunately, Sheslow and Adams (2003b) did not use 
second-order factor analysis in both the EFA procedures 
they employed.

According to Carroll (1995), all cognitive measures are 
composed of reliable variance that is attributable to a higher 
order general factor, reliable variance that is attributable to 
first-order group factors, and error variance. Because of 
this, Carroll argued that variance from the higher order fac-
tor must be extracted first to residualize the lower order fac-
tors, leaving them orthogonal to the higher order dimension. 
Thus, variability associated with a higher order factor is 
accounted for before interpreting variability associated with 
lower order factors, resulting in variance being apportioned 
to higher order and lower order dimensions. To accomplish 
this task, Carroll (1993, 1995) recommended second-order 
factor analysis of first-order factor correlations followed by 
a Schmid–Leiman transformation (SL; Schmid & Leiman, 
1957). The SL technique allows for the orthogonalization of 
higher order variance from lower order factors and results 
in an approximate bifactor solution (Beaujean, 2015). The 
bifactor procedure mathematically separates variance 
attributable to the general factor and to group-specific 
factors by directly residualizing variance assigned to each 
level (e.g., see Figure 4). In contrast, an indirect hierarchi-
cal model has general factor variance mediated through 
group factors (e.g., see Figure 1) and may not present as 
lucid an accounting of variance apportionment making clin-
ical interpretation more difficult. A bifactor solution permits 
the practitioner to more clearly understand how the vari-
ance attributable to the general factor (i.e., the WRAML-2 
GMI score) and to group factors (i.e., WRAML-2 Index 
scores) should be assigned and how much interpretative 
emphasis should be placed on each level of the instrument 
(e.g., full scale vs. index; Canivez, 2016). If the variance 
attributable to group factors is low, then interpretive empha-
sis should reside at the full-scale level. The SL technique 
has been used by many researchers to investigate the 
approximate bifactor structure of tests of cognitive ability 
(e.g., Canivez, 2011; Canivez & Watkins, 2010; Canivez, 
Watkins, & Dombrowski, 2016; Dombrowski, 2013; 
Dombrowski, McGill, & Canivez, 2016).

EFA results in the Technical Manual were additionally 
supported by confirmatory factor analysis (CFA) results 
that compared competing models with one, two, and three 
correlated factors with the core subtests to the entire norma-
tive sample. Of the three first-order models, the three 
oblique factor model was the best fitting with factor correla-
tions ranging from .51 to .73. Because these three factors 

are highly correlated, a higher order or hierarchical struc-
ture is implied and should be explicated (Gorsuch, 1983; 
Thompson & Daniel, 1996). However, the oblique three-
factor model did not include a higher order dimension 
despite the fact that the Technical Manual (Sheslow & 
Adams, 2003b) posits a hierarchical structure with a global 
composite (serving as a proxy for a higher order general 
memory dimension) at the apex of the model (Kranzler & 
Keith, 1999). According to McClain (1996), it is a mistake 
to interpret a second-order factor on the basis of first-order 
dimensions, as it can lead to overinterpretation of lower 
order factors in clinical practice.

Although independent structural validity investigations 
of the WRAML2 have been scarce, several studies provided 
inconsistent support for a similar oblique three-factor struc-
ture posited in its predecessor in both clinical and normative 
samples (e.g., Aylward, Gioia, Verhulst, & Bell, 1995; 
Burton, Donders, & Mittenberg, 1996; Dewey, Kaplan, & 
Crawford, 1997; Gioia, 1998; Phelps, 1995). The EFA 
results produced by Gioia (1998) are particularly notewor-
thy as he was the only researcher to attempt to explicate 
second-order structure using the SL procedure, as insisted 
by Carroll (1993, 1995). In doing so, it was found that the 
vast majority of WRAML subtest variance was attributable 
to a higher order general memory dimension and that the 
residual variance afforded to the three first-order group fac-
tors was consistently weak, calling into question their 
potential clinical utility. Additionally, he critiqued the use 
of PCA as a proxy for common factor analysis and the fail-
ure to explicate higher order structure in the original 
WRAML validation analyses. Thus, it is surprising that the 
SL procedure, or any form of higher order analyses, was 
overlooked when developing the WRAML2 as the authors 
cited the Gioia (1998) study within the Technical Manual 
and appeared to be aware of the serious questions raised 
about the structure of the WRAML. Also missing from the 
WRAML2 Technical Manual were proportions of variance 
accounted for by the hypothesized second-order factor and 
the three first-order factors, second-order subtest loadings, 
subtest specificity estimates, and model-based reliability 
estimates including omega coefficients (ω; Canivez, 2016; 
Rodriguez, Reise, & Haviland, 2016). The body of litera-
ture on factor analysis methodology (e.g., Carroll, 1993, 
1995; Gorsuch, 1983; Thompson, 2004) and model-based 
reliability (e.g., Reise, 2012; Reise, Bonifay, & Haviland, 
2013) recommends the inclusion of this information because 
it assists test users in determining how the instrument 
should be interpreted.

Since its publication, WRAML2 validity studies have 
largely focused on examining the diagnostic utility of the 
measurement instrument with different clinical populations 
(e.g., Atkinson, Konold, & Glutting, 2008; Pham & Hasson, 
2014; Sowerby, Seal, & Tripp, 2011). Despite the informa-
tion provided by these researchers, these procedures are 
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inadequate for validating the internal structure of a mea-
surement instrument (Clark & Watson, 1995; Cronbach & 
Meehl, 1955). Of greater concern, the WRAML2 has yet to 
be subjected to higher order analyses, suggesting that our 
understanding of the structuring of these variables is pres-
ently unknown.

Purpose of the Current Study

Over the past decade, unrestricted EFA methods have been 
eclipsed by more restrictive CFA methods when examining the 
structural validity of psychological measures (Reynolds & 
Keith, 2013). However, it has been suggested (e.g., Canivez, 
2013; Frazier & Youngstrom, 2007) that use of CFA has 
resulted in overfactoring of ability measures such as the 
WRAML2. Although EFA and CFA are considered to be com-
plementary procedures, they provide answers to different 
empirical questions and that when the results from these proce-
dures are in agreement, greater confidence can be placed in the 
internal structure of a test (Gerbing & Hamilton, 1996; Schmitt, 
2011). As a consequence, Carroll (1995) recommended that “a 
confirmatory analysis of a dataset should not be published 
without an accompanying statement or report on one or more 
appropriate exploratory analyses” (p. 437). Consequently, the 
current study examined the applicability of a hierarchical mea-
surement model for the WRAML2 normative sample data 
using exploratory and confirmatory methodologies. Although 
commonly applied to intelligence tests, use of higher order 
variance partitioning procedures on other types of psychologi-
cal assessment tools has increased in recent years to account 
for the ever increasing specification of multilevel models and 
related interpretive procedures for these measures (i.e., 
Dombrowski, 2015; Reise, Moore, & Haviland, 2010). 
Therefore, it is important to ascertain the degree to which tools 
such as the WRAML2 measure multiple lower order con-
structs well if at all (Glutting, Watkins, & Youngstrom, 2003). 
It is believed that the results that are obtained will be instruc-
tive for correct interpretation of the WRAML2 and other 
related measures of memory and learning.

Method

Participants

Participants were children and adults aged 9 to 90 years  
(n = 880) drawn from the WRAML2 standardization sam-
ple. Demographic characteristics are provided in detail in 
the WRAML2 Technical Manual (Sheslow & Adams, 
2003b). The standardization sample (N = 1,200) was 
obtained using stratified proportional sampling across demo-
graphic variables of age, sex, race/ethnicity, parent educa-
tional level, and geographic region. Examination of the 
tables provided in the Technical Manual revealed a close 
correspondence to the 2001 U.S. Census estimates across 
the stratification variables. The present sample was selected 

for analyses so as to provide results that could be compared 
with the structural analyses reported in the Technical Manual 
with the total sample without completing redundant analy-
ses. Additionally, normative participants aged 5 to 8 years 
were excluded because of previous research (e.g., Putzke, 
Williams, Adams, & Boll, 1998; Putzke, Williams, Glutting, 
Konold, & Boll, 2001) suggesting that lower order WRAML 
abilities failed to emerge consistently at those ages.

Measurement Instrument

The WRAML2 is a multidimensional test of memory abili-
ties for children and adults aged 5 to 90 years. The measure 
is composed of 17 subtests, 6 of which contribute to the 
measurement of three first-order index scores: Verbal 
Memory, Visual Memory, and Attention/Concentration. 
The core subtests are linearly combined to form the second-
order full-scale GMI composite. It should be noted that 
supplementary measures can be combined to form an addi-
tional Working Memory Index score, although performance 
on these measures does not contribute to the core battery 
indexes or GMI scores, thus, they were excluded from the 
present study. All index and composite variables on the 
WRAML2 are expressed as standard scores with a mean of 
100 and a standard deviation of 15. Extensive normative 
and psychometric data can be found in the WRAML2 
Technical Manual (Sheslow & Adams, 2003b).

Procedure and Data Analyses

Exploratory Factor Analysis. Following best practice guide-
lines (e.g., Fabrigar et al., 1999; Preacher & MacCallum, 
2003; Thompson, 2004), EFA was implemented using 
SPSS version 23 (IBM Corp., 2014) using data extracted 
from the intercorrelation matrix of the six WRAML2 core 
subtests for ages 9 to 90 (Sheslow & Adams, 2003b,  
p. 113). Bartlett’s test of sphericity was used to ensure that 
the correlation matrix was not random, and the Keiser–
Meyer–Olkin statistic was required to be above a minimum 
standard of .60 to ensure that the matrix was suitable for 
factor analysis (Kaiser, 1974). The principal axis factoring 
(PAF) method was used because of its ability to recover 
weak factors as well its ability to disclose latent structure 
with measurement models that have few indicators per fac-
tor or that may be just identified (de Winter & Dodou, 
2012). Iterations in first-order PAF extraction were limited 
to two in estimating final communality estimates. Accord-
ing to Gorsuch (2003), limiting iterations to two provides 
an optimal balance between sampling and measurement 
error in estimating communality. As recommended by 
Velicer, Eaton, and Fava (2000), multiple criteria for deter-
mining the number of factors to retain were examined. The 
procedures used to determine the appropriate number of 
factors for retention and rotation included Horn’s parallel 
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analysis (HPA; Horn, 1965), and MAP (Velicer, 1976), to 
compliment a visual scree test (Cattell, 1966). While the 
scree test was used to visually determine the optimum num-
ber of factors to retain, it is a subjective methodology. As 
recommended by Frazier and Youngstrom (2007), HPA 
and MAP were also included as they potentially protect 
against the threat of overfactoring in EFA. Random data for 
HPA analyses were generated using Watkins’s (2000) par-
allel analysis program with 100 replications to produce 
stable estimates. MAP procedures were conducted using 
O’Connor’s (2000) SPSS syntax program. Finally, addi-
tional consideration was given to theoretical convergence.

Initial PAF extraction was followed by a promax 
(oblique) rotation (k = 4; Gorsuch, 2003). Because an indi-
rect hierarchical measurement model was implied for the 
WRAML2, higher order factor analysis using the SL 
(Schmid & Leiman, 1957) procedure was applied to oblique 
first-order factors to elucidate the hierarchical structuring of 
variables using the MacOrtho program by Watkins (2004). 
This procedure allows for the extraction of a second-order 
factor from a first-order factor correlation matrix. According 
to Schmid and Leiman (1957), this transforms “an oblique 
solution containing a hierarchy of higher-order factors into 
an orthogonal solution which not only preserves the desired 

interpretation characteristics of the oblique solution, but 
also discloses the hierarchical structuring of the variables” 
(p. 53). Criteria for determining factor adequacy were 
established a priori. In accord with Dombrowski (2013), 
salient coefficients were defined as those ≥.30, for the 
oblique solution, and ≥.20, for the orthogonalized solution.

Confirmatory Factor Analysis. EQS, Version 6.2 (Bentler & 
Wu, 2012) was used to conduct CFA using maximum likeli-
hood estimation. To align with the CFA analyses reported in 
the WRAML2 Technical Manual (Sheslow & Adams, 
2003b), three first-order models were specified and exam-
ined at ages 9 to 90: (a) one factor; (b) two oblique Verbal 
and Visual Memory factors; and (c) three oblique Verbal 
Memory, Visual Memory, and Attention/Concentration fac-
tors (see Figure 2). Additionally, two higher order models 
were explicated: an indirect hierarchical model and a direct 
hierarchical model, with three first-order group factors. 
Because the six subtest WRAML2 model configuration 
only has two subtest indicators for the three resulting group-
specific factors, subtest indicators were constrained to be 
equal in the direct hierarchical (i.e., bifactor) model to 
ensure specification as conducted by Watkins and Beaujean 
(2014). Beaujean (2015) has provided a detailed description 

Figure 2. Correlated three-factor first-order measurement model, with standardized coefficients, for the Wide Range Assessment of 
Memory and Learning–Second Edition ages 9 to 90 (n = 880).
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of the salient differences between direct and indirect hierar-
chical models and assumptions regarding the appropriate 
structuring and influence of latent cognitive dimensions, 
but the direct hierarchical model is a variant of the so-called 
bifactor model originally described by Holzinger and Swin-
eford (1937).

To comport with best practice (e.g., Brown, 2016; Marsh, 
Hau, & Grayson, 2005), multiple indices were examined to 
evaluate the adequacy of model fit. Specifically, the (a) chi-
square, (b) comparative fit index (CFI), (c) root mean 
square error of approximation (RMSEA), (d) standardized 
root mean square residual (SRMR), and (e) Akaike infor-
mation criterion (AIC). Although there are no golden rules 
for evaluating model fit indices (i.e., Markland, 2007), the 
following guidelines were used for good model fit criteria: 
(a) CFI ≥ 0.95; (b) SRMR and RMSEA ≤ 0.06 (Hu & 
Bentler, 1999). Higher CFI values and lower RMSEA val-
ues indicate better model fit, and these two indices were 
supplemented with chi-square and AIC values. There are no 
specific criteria for information-based indices like the AIC, 
but smaller values may indicate better approximations of 
the true measurement model after accounting for model 
complexity (Vrieze, 2012). Meaningful differences between 
well-fitting models were evaluated based on the following 
criteria: (a) exhibit good fit according to CFI, RMSEA, and 
SRMR indices; (b) demonstrate a ΔCFI value ≤ 0.01 for 
nested models (Dimitrov, 2012); and/or (c) display the 
smallest AIC value (Burnham & Anderson, 2004).

Finally, the bifactor model hypothesizes that each 
WRAML2 subtest is influenced simultaneously by two 
orthogonal latent constructs: a general memory factor (g) and 
a first-order domain-specific group factor (e.g., Verbal 
Memory, Attention/Concentration, etc.). As a consequence, 
Omega (ω) and omega-hierarchical/hierarchical subscale 
(ω

h
/ω

hs
) were estimated as model-based reliability estimates 

of the latent factors (Gignac & Watkins, 2013). Whereas ω 
estimates the variance accounted for by both of the constructs 
in a given domain, ω

h
 estimates the variance accounted for by 

a single target construct. Chen, Hayes, Carver, Laurenceau, 
and Zhang (2012) stressed that “for multidimensional con-
structs, the alpha coefficient is complexly determined, and 
McDonald’s omega-hierarchical (ω

h
; 1999) provides a better 

estimate for the composite score and thus should be used”  
(p. 228). Omega estimates were produced using the Omega 
program (Watkins, 2013). Albeit subjective, omega coeffi-
cients should at a minimum exceed .50, but .75 would be pre-
ferred (Reise, 2012; Reise et al., 2013).

Results

Exploratory Factor Analysis

Factor Extraction Criteria. Whereas parallel analysis (Horn, 
1965) and the MAP (Velicer, 1976) criterion recommended 

retention of one factor, visual scree suggested that three fac-
tors be retained. Given that, it is better to overfactor than 
underfactor (Wood, Tataryn, & Gorsuch, 1996), three fac-
tors were extracted to accord with the theoretical structure 
delineated in the WRAML2 Technical Manual (Sheslow & 
Adams, 2003b).

Oblique Solution. The results of Bartlett’s test of sphericity 
indicated that the correlation matrix was not random,  
χ2(15) = 1000.11, p < .001, and the Kaiser–Meyer–Olkin 
measure of sampling adequacy coefficient of .77, was well 
above the minimum standard for conducting factor analysis 
(Kaiser, 1974). Communality estimates ranged from .331 
(Number–Letter) to .481 (Story Memory). On the basis of 
these values, it was determined that the correlation matrix 
was appropriate for the EFA procedures that were employed. 
Table 1 presents results from extracting three WRAML2 
factors with promax (k = 4) rotation. All WRAML2 subtests 
were saliently and properly associated with their theoretical 
factor demonstrating desirable simple structure. Correla-
tions between the factors ranged from .53 and .74 implying 
the possible presence of a higher order dimension requiring 
explication (Gorsuch, 1983; Thompson, 2004).

Orthogonalized Solution. The three first-order oblique EFA 
factor solution was transformed with the SL orthogonaliza-
tion procedure. Results for the second-order factor analysis 
of three first-order WRAML2 factors are also presented in 
Table 1. All subtests were properly associated (higher resid-
ual variance) with their theoretically proposed factor after 
removing variance associated with a general memory 
dimension. The general factor accounted for 28.9% of the 
total variance and 72% of the common variance. The gen-
eral factor also accounted for between 18.4% (Picture 
Memory) and 45.4% (Story Memory) of individual subtest 
variability. At the first-order level, the Verbal Memory fac-
tor accounted for an additional 0.6% of the total variance 
and 1.5% of the common variance, the Visual Memory fac-
tor accounted for an additional 5.4% of the total variance 
and 13.5% of the common variance, and the Attention/Con-
centration factor accounted for an additional 5.2% of the 
total variance and 13% of the common variance. The gen-
eral and group factors combined to measure 40% of the 
variance in WRAML2 scores resulting in 59% unique vari-
ance (combination of specific and error variance). Subtest 
specificity (reliable variance unique to the individual mea-
sures) ranged from .38 to .50.

Confirmatory Factor Analysis

Model fit statistics presented in Table 2 illustrate the 
increasingly better fit from one to three factors; however, fit 
statistics indicated that the one- and two-factor models were 
inadequate (CFI < 0.95 and/or RMSEA > 0.06). Consistent 
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with the CFA results reported in the Technical Manual for 
the total normative sample, the correlated three-factor 
model (see Figure 2) provided the best fit to these data 
among the first-order models and was statistically a better 
fit to these data than the rival two-factor model, Δχ2(2) = 
91.50, p < .001. However, because the latent factors were 
highly correlated, a higher order structure is implied 
(Gorsuch, 1983), rendering the correlated three-factor 
model a less than optimal explanatory model of the 
WRAML2 core battery structure (Canivez, 2016; Gignac, 
2016; Thompson, 2004). Since the three-factor first-order 
model is underidentified, a higher order solution will yield 
the same goodness of fit as the first-order model; thus, 
meaningful differences in fit statistics cannot be assessed. 
Nevertheless, Brown (2016) suggests that it may be “sub-
stantively meaningful to evaluate such a solution in order to 
examine the magnitude of (and statistical significance) of 
the higher-order factor loadings and relationships of the 
higher-order factors to the observed measures” (p. 292). 
Accordingly, an indirect hierarchical solution was estimated 

to better examine the structural relationships between latent 
dimensions and measured variables to aide clinical interpre-
tation of these constructs.

In the indirect hierarchical model (Figure 3), the stan-
dardized path from the second-order general factor to Verbal 
Memory was .99, indicating that Verbal Memory was diffi-
cult to disentangle from the higher order general factor 
(Canivez & Kush, 2013). As a consequence, an orthogonal 
version of the theoretical three-factor model was also exam-
ined (Figure 4). In contrast to the indirect hierarchical 
model, the bifactor model (Reise, 2012) which has also 
been called a direct hierarchical model (Gignac, 2007) esti-
mates the influences of first-order factors and the general 
factor on measured variables simultaneously. This model 
has been recommended for hierarchically structured con-
structs such as memory and other related cognitive abilities 
(Brunner, Nagy, & Wilhelm, 2012) and has been applied to 
other cognitive scales (see Canivez, 2016; Gignac & 
Watkins, 2013; Watkins & Beaujean, 2014). Of note, a 
bifactor model was explicitly recommended by John Carroll 

Table 1. Exploratory Factor Analysis With Oblique and Orthogonalized Pattern Coefficients of the Wide Range Assessment of 
Memory and Learning–Second Edition Core Subtests Ages 9 to 90 (n = 880).

Subtest

Oblique solution

General

Orthogonalized solution

h2 u2I II III I II III

Story Memory .604 .118 −.002 .674 .132 .080 .080 .485 .516
Verbal Learning .634 −.022  .083 .664 .139 −.015 .055 .463 .537
Design Memory .021 .565  .067 .487 .005 .381 .045 .384 .616
Picture Memory .007 .616 −.043 .429 .002 .416 −.029 .357 .643
Finger Windows .054 −.011 .585 .480 .012 −.007 .390 .384 .616
Number–Letter −.013 .016 .577 .430 −.003 .011 .384 .332 .668
Total variance (%) 28.9 0.6 5.4 5.2 40.1 59.9
Common variance (%) 72.0 1.5 13.5 13.0  

Note. h2 = communality; u2 = uniqueness. As per Dombrowski (2013), salient loadings ≥.30, for the oblique solution, and ≥.20, for the orthogonalized 
solution are denoted in bold.

Table 2. Fit Statistics for Competing Structural Models of the Wide Range Assessment of Memory and Learning–Second Edition 
Core Subtests Ages 9 to 90 (n = 880).

Model χ2 df CFI SRMR RMSEA 90% CI RMSEA AIC

First-order models
 One factor 119.24 9 0.888 0.058 0.118 [0.099, 0.137] 101.24
 Two oblique factors 113.41* 8 0.893 0.058 0.122 [0.103, 0.143] 97.41
 Three oblique factors 21.91** 6 0.984 0.021 0.055 [0.031, 0.080] 9.91
Hierarchical models
 Indirect hierarchicala 21.91 6 0.984 0.021 0.055 [0.031, 0.080] 9.91
 Direct hierarchicalb 21.91 6 0.984 0.021 0.055 [0.031, 0.080] 9.91

Note. df = degrees of freedom; CI = confidence interval; CFI = comparative fit index; SRMR = standardized root mean square residual; RMSEA = root 
mean square error of approximation; AIC = Akaike information criterion.
aIdentical goodness-of-fit and fit statistics with previous model due to just identification. bIdentical goodness-of-fit and fit statistics with previous two 
models due to model constraints.
*Statistically different (p < .01) from previous model. **Statistically different (p < .01) from previous two models.
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Figure 3. Indirect hierarchical measurement model, with standardized coefficients, for the Wide Range Assessment of Memory and 
Learning–Second Edition ages 9 to 90 (n = 880).
Note. Mem-g = general memory factor.

Figure 4. Direct hierarchical (bifactor) measurement model, with standardized coefficients, for the Wide Range Assessment of 
Memory and Learning–Second Edition ages 9 to 90 (n = 880).
Note. Mem-g = general memory factor.
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in his explorations of the structure of human cognitive abili-
ties such as memory (Beaujean, 2015). Given the underi-
dentification of the WRAML2 factors, test loadings within 
each factor were constrained to equality.

Table 3 presents decomposed core battery subtest variance 
estimates of the WRAML2 based on a direct hierarchical 
model. In this orthogonal model, the general factor accounted 
for 30.6% of the total variance and 69.3% of the common 
variance. Among the group factors, the Verbal Memory fac-
tor accounted for 0.9% of the total variance and 0.7% of the 
common variance, the Visual Memory for 20.1% of the total 
variance and 15.2% of the common variance, and the 
Attention/Concentration factor accounted for 19.6% of the 
total variance and 14.8% of the common variance. Thus, the 
higher order general factor accounted for greater portions of 
WRAML2 common and total variance relative to the indi-
vidual factor index scores. Omega hierarchical and hierarchi-
cal subscale coefficients presented in Table 3 provide 
estimates of the reliability of the latent constructs with the 
effects of other constructs removed. In the case of the three 
WRAML2 factor indexes, omega hierarchical subscale coef-
ficients estimated the scale reliabilities with the effects of the 
general factor removed, and ranged from .012 (Verbal 
Memory) to .285 (Visual Memory), well below recommend 
levels for confidant clinical interpretation.

Discussion

The WRAML2 is a multidimensional battery of memory and 
learning abilities that is routinely utilized by assessment psy-
chologists in a variety of clinical settings. As its predecessor 
was the first memory assessment tool designed for use with 
children, the WRAML2 is especially popular in school and 
pediatric psychology for appraising these dimensions (Homack, 

2013). Despite providing users with a variety of scores that 
imply a multilevel structure, hierarchical structure was not 
explicated in the Technical Manual (Sheslow & Adams, 2003b) 
and has yet to be investigated since its publication. Instead, sub-
tests were grouped into several first-order indexes in part on the 
results obtained from components analysis and the resulting 
three-factor oblique structure was supported in a CFA with the 
total normative sample.

Whereas users are encouraged to focus most of their 
interpretive weight on the second-order GMI composite, 
the EFA and CFA results reported in the Technical Manual 
tend to provide evidence only for the interpretability of the 
first-order index scores. Although oblique measurement 
models are widely utilized to validate the structure of cogni-
tive measures, it is a mistake to extrapolate higher order 
structure from first-order dimensions (Carretta & Ree, 
2001; McClain, 1996). Consequently, this study applied 
both EFA and CFA methods to the WRAML2 core battery 
subtests for participants in the normative sample aged 9 to 
90 years in order to better disclose higher order structure.

EFA results suggested the retention of only one factor, in 
contrast to the theoretical three factors posited by Sheslow 
and Adams (2003b). The extraction of three factors resulted 
in highly correlated first-order dimensions, suggesting the 
presence of second-order general factor. Gignac (2007) has 
encouraged researchers to always perform orthogonalization 
procedures when examining higher order model solutions. 
Thus, in order to better understand the underlying structure of 
the WRAML2, we utilized recommended procedures (e.g., 
Carroll, 1993, 1995; Schmid & Leiman, 1957) in order to 
correctly apportion subtest variance appropriately to higher 
and lower order dimensions. Similar to Gioia (1998), we 
found that the oblique loading coefficients produced from 
PAF were significantly discrepant and attenuated from the 

Table 3. Sources of Variance in the WRAML-2 According to a Three-Factor Direct Hierarchical Model.

Subtest

General Verbal Visual A/C

h2 u2 Error s2b S2 b S2 b S2 b S2

Story Memory .715 .511 .097* .009 .521 .479 .080 .399
Verbal Learning .700 .490 .097* .009 .499 .501 .160 .341
Design Memory .493 .243 .448 .201 .444 .556 .140 .416
Picture Memory .425 .181 .448 .201 .381 .619 .170 .449
Finger Windows .478 .228 .443 .196 .425 .575 .190 .385
Number–Letter .425 .181 .443 .196 .377 .623 .170 .453
% Total variance 30.6 0.9 20.1 19.6 44.1 55.9 15.2 40.7
% Common variance 69.3 0.7 15.2 14.8 100.0

 ω = .783 ω = .675 ω = .583 ω = .572  
 ω

h
 = .678 ω

hs
 = .012 ω

hs
 = .285 ω

hs
 = .280  

Note. WRAML-2 = Wide Range Assessment of Memory and Learning–Second Edition; A/C = Attention/Concentration factor; b = standardized loading 
of subtest on factor; S2 = variance explained; h2 = communality; u2 = uniqueness; Error = 1 − reliability from Sheslow and Adams (2003b); s2 = u2 − 
Error; ω = omega; ω

h
 = omega hierarchical; ω

hs
 = omega hierarchical subscale.

*p < .05.
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PCA coefficients reported in the Technical Manual. Because 
common and specific factor variances are conflated in PCA, 
these solutions have a tendency to inflate loadings and pro-
vide the illusion of a strong component structure (Snook & 
Gorsuch, 1989). According to Fabrigar and Wegener (2012), 
differences between PCA and PAF are more likely to emerge 
with low communalities such as those observed in the present 
analyses with the WRAML2.

When the theoretical model was subjected to higher order 
EFA via the Schmid and Leiman (1957) procedure, a strong 
general factor accounted for 29% of the total variance and 72% 
of the common variance, whereas all three group factors com-
bined accounted for 6% of the total variance and 28% of the 
common variance. Although WRAML2 subtests were consis-
tently aligned with their theoretically assigned factors, the 
three-factor model appears to be overfactored. Whereas desired 
simple structure was observed for the Visual Memory and 
Attention/Concentration factors, residual loadings on the Verbal 
Memory factor were weak (<.20), calling into question its via-
bility within the WRAML2 measurement model. These EFA 
results replicate the important role of the general factor found in 
related EFA investigations of intelligence tests using similar 
methods (Canivez et al., 2016; Dombrowski, 2013; McGill, 
2016; McGill & Spurgin, 2015) and provide little support for 
interpretation of the WRAML2 beyond the GMI composite.

CFA results were more ambiguous. Consistent with the 
CFA results reported in the Technical Manual with the total 
normative sample, fit statistics suggested that a three-fac-
tor oblique correlated factors model best fit the WRAML2 
data. Similar to EFA results, correlations between first-
order dimensions were moderate to strong, indicating the 
presence of second-order factor that required explication. 
The application of an indirect hierarchical model with a 
general memory dimension at the apex resulted in a near 
perfect loading (.99) between Verbal Memory and the gen-
eral factor. When the first- and second-order loadings on 
the WRAML2 subtests were residualized using the proce-
dures described in Reynolds and Keith (2013), the general 
factor accounted for 43% to 72% of subtest variance, 
whereas the first-order factors accounted for 0% to 23% of 
the residual variance. Results from the application of a 
bifactor measurement model in which the effects of the 
general and first-order group factors on the WRAML2 sub-
tests were directly estimated, diverged significantly from 
EFA results and provided stronger support for interpreta-
tion beyond the GMI. Whereas the general factor accounted 
for 31% of the total variance and 69% of the common vari-
ance, the three first-order factors combined accounted for 
41% of the total variance and 31% of the common vari-
ance. Five of the six WRAML2 tests displayed uniqueness 
values that that exceeded their communality, indicating 
that much of the variability in these measures is attribut-
able to test-specific and error variances. Nevertheless, 
omega coefficients indicated that only the general factor 

was measured with enough precision to warrant confident 
clinical interpretation.

As stated by Gorsuch (2003), “the ultimate arbiter in sci-
ence is well established: replication” (p. 153). As EFA and 
CFA provide answers to different empirical questions, contra-
dictory results are commonly reported within the cognitive 
assessment literature (Reynolds & Keith, 2013). Whereas 
strong support was found for the GMI in the present study, the 
strength and consistency of the three first-orders group factors 
varied across EFA and CFA analyses. Despite this variation, 
the Verbal Memory factor was consistently weak across all of 
the measurement models, indicating that dimension accounted 
for trivial proportions of variance in tests assigned to that fac-
tor apart from the general factor.

Although users of the WRAML2 have been encouraged 
(e.g., Adams, 2013; Miller, 2013) to forgo administration of 
the core battery at the expense of more selective assessment of 
first-order dimensions, results from the present study suggest 
that specific approach and other related cross-battery assess-
ment procedures (e.g., Flanagan, Ortiz, & Alfonso, 2013) 
should be employed with the WRAML2 with extreme cau-
tion, if at all, until more consistent evidence is provided to 
support interpretation of the group-specific factors. These 
results illustrate well that nontrivial variance attributable to 
the general factor is endemic at all levels of the measurement 
instrument and must be accounted for when interpreting 
group-specific WRAML2 dimensions in isolation (Gignac, 
2007; Gustaffson & Åberg-Bengtsen, 2010).

Implications for Test Development

Since general and more specific psychological constructs cannot 
be observed directly, assessment researchers must choose from a 
variety of measurement models that link latent constructs to 
measured variables when validating an assessment tool. This 
decision is crucial as it provides the statistical rationale for the 
standardized scores that are computed for that measure that are 
thought to reflect these constructs (Brunner et al., 2012). 
According to the Standards for Educational and Psychological 
Testing, “When a test provides more than one score, the distinc-
tiveness of the separate scores should be demonstrated” 
(American Educational Research Association, American 
Psychological Association, & National Council on Measurement 
in Education, 2014, p. 26). Furthermore, Standard 1.14 explic-
itly requires that a rationale be provided for the development of 
composite scores. As a consequence, it is difficult to understand 
why the authors of the WRAML2 and other related ability mea-
sures continue to rely on correlated factors models to validate 
internal structure in which a second-order model is consistent 
with the constructs being measured and implied in the scores 
that are later developed for that measure and presented as capa-
ble of being interpreted. First-order measurement models focus 
only on specific abilities; as a consequence, extrapolating sec-
ond-order structure from the relationships observed between 
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first-order dimensions may result in the retention of spurious 
constructs (Gignac, 2007, 2016).

The EFA/CFA results for the WRAML2 presented herein 
illustrate well that the correlated factors model presented in 
the Technical Manual overestimates the importance of the 
Verbal Memory factor when the hierarchical structuring of 
the variables are disclosed. As stated by Gustaffson and 
Åberg-Bengtsen (2010),

if our intention is to measure one or more narrow factors, it is 
necessary to partial out the influence of the more general 
factors that exert influence on the observed variables . . . but 
this cannot be done unless information is available that allows 
estimation of the more general dimensions. (p. 109)

It should be noted that estimation of a hierarchical model is 
possible in most CFA programs with data sets that yield two 
or more first-order group factors and procedures for doing 
so are commonly provided in accompanying program 
guides and manuals (e.g., Bentler, 2006; Byrne, 2006).

Limitations

The present results were derived from a single intercorre-
lation matrix representing a large proportion of the 
WRAML2 age span. Although these results provide a rel-
evant comparison with the psychometric analyses pre-
sented in the Technical Manual that utilized the total 
normative sample, additional independent examinations 
of the construct validity of the measurement instrument at 
different points of the age span would be beneficial. Also, 
given the neuropsychological foci of the instrument, it is 
possible that the factor structure of the WRAML2 may 
emerge more consistently in clinical populations such as 
those suspected of having more focal cortical injuries. 
Furthermore, the consistently low communalities pro-
duced for WRAML2 indicators suggest that the weak and 
inconsistent first-order effects may be the product of the 
way in which these dimensions were sampled and/or mea-
sured (Gioia, 1998). Therefore, additional research to 
examine the potential generalizability of these findings 
would be of benefit to WRAML2 users.

Finally, as the WRAML2 core battery measurement 
model is underidentified, it is not possible to determine 
which manifestation of the hierarchical model (i.e., direct 
vs. indirect) is most appropriate for the data via CFA 
(MacCallum, Wegener, Uchino, & Fabrigar, 1993). As 
noted by Beaujean (2015), “While the higher-order model 
[indirect hierarchical] is technically nested within the bi-
factor model, they provide very different conceptualiza-
tions of g and other factors in the model” (p. 122). In the 
indirect hierarchical model, the general factor’s influence is 
mediated by the first-order factors and the general factor is 
produced from the correlations between the group factors. 

As a result, this model produces a constraint that restricts 
the general and specific variance within a group factor to be 
proportional (Gignac, 2016; Yung, McLeod, & Thissen, 
1999). As a result, it has been argued that the bifactor model, 
in which the effects of the general and specific factors on 
measured variables are estimated directly, is preferred as 
the effects of the latent variables are easier to interpret 
(Canivez, 2016; Gignac, 2007, 2016).

Nevertheless, some researchers have questioned 
whether the bifactor model is a tenable structure for human 
cognitive abilities (e.g., Murray & Johnson, 2013; 
Reynolds & Keith, 2013). While adjudication of this issue 
is beyond the scope of the present discussion, CFA results 
indicate that, regardless of one’s preference in terms of a 
hierarchical model, the effects of the general factor are 
superior to the individual group-specific factors on the 
WRAML2.

Conclusion and Implications for Interpretation

The present study provides clinicians with important 
information for interpreting the WRAML2 (Sheslow & 
Adams, 2003a). Whereas our results suggest that users 
can be reasonably confident in their interpretations of the 
GMI composite, the contribution of the group-specific 
factors was less consistent. As a consequence, it is recom-
mended that users of the WRAML2, focus most of their 
interpretive weight on the GMI score, with additional 
consideration of select factor scores (Visual Memory and 
Attention/Concentration) to be employed cautiously. As 
an example, if users elect to interpret the Visual Memory 
score, they must bear in mind that Visual Memory tasks 
have long been known to be factorially complex. 
According to Carroll (1993), it is common for examinees 
to encode information on these tasks in a nonvisual man-
ner. He noted that if a Visual Memory factor exists it 
“would appear in tests that emphasize the person’s ability 
to form and remember . . . a mental image or representa-
tion of a visual shape or configuration that does not repre-
sent some easily recognized object” (p. 282). As both of 
the subtests that combine to form the Visual factor on the 
WRAML2 contain stimuli that is not novel, additional 
information is needed to determine the sensory modality 
that is sampled by these tasks.

As a result of these deficiencies, we encourage users of 
the WRAML2 to additionally forgo the recommended proce-
dures for index score discrepancy analyses nor use that infor-
mation to make inferences regarding cortical lateralization 
(i.e., Adams & Reynolds, 2009. As “the ultimate responsibil-
ity for appropriate test use and interpretation lies predomi-
nantly with the test user” (American Educational Research 
Association, American Psychological Association, & 
National Council on Measurement in Education, 2014,  
p. 141), clinicians using the WRAML2 in clinical evaluations 
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must seriously consider the present information to make 
informed decisions about which scores have satisfactory reli-
ability, validity, and utility.
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