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Abstract 

Researchers continue to debate the constructs measured by commercial ability tests. 

Factor analytic investigations of these measures have been used to develop and refine widely 

adopted psychometric theories of intelligence particularly the Cattell-Horn-Carroll (CHC) model. 

Even so, this linkage may be problematic as many of these investigations examine a particular 

instrument in isolation and CHC model specification across tests and research teams has not been 

consistent. To address these concerns, the present study used Monte Carlo (MC) resampling to 

investigate the latent structure of four of the most widely used intelligence tests for children and 

adolescents. The results located the approximate existence of the publisher posited CHC 

theoretical group factors in the DAS-II and the KABC-II but not in the WISC-V or the WJ IV 

Cognitive. Instead, the results supported alternative conceptualizations from independent factor 

analytic research. Additionally, whereas a bifactor model produced superior fit indices in two 

instruments (WISC-V and WJ IV Cognitive), a higher-order structure was found to be superior 

in the KABC-II and the DAS-II. Regardless of the model employed, the general factor captured a 

significant portion of each instrument’s variance. Implications for IQ test assessment, 

interpretation and theory are discussed. 

Keywords: Monte Carlo Simulation; Modeling; IQ tests; Intelligence; Factor Structure; 

Cattell-Horn-Carroll; Factor Analysis 

  



MONTE CARLO MODELING OF IQ TEST STRUCTURE     4  

Monte Carlo Modeling of Contemporary Intelligence Test (IQ) Factor Structure: 

Implications for IQ Assessment, Interpretation and Theory 
The attempt to ascribe a well-substantiated theory and interpretive approach that can be 

applied consistently across intelligence (IQ) tests is laudable but remains elusive.  The construct 

of IQ is reflected by a latent, unobservable variable and/or set of variables and researchers have 

been debating how to “best” measure the construct for more than a century (Carroll, 1993).  

Despite often polemic debates over the past two decades about which model and interpretive 

approach is superior, researchers forge ahead and try to fit theoretical and applied models to the 

construct of intelligence; sometimes researchers become entrenched in dogmatic, polarizing 

positions about which theoretical conceptualization, model, and interpretive approach is “best” 

(Benson, Beaujean, McGill & Dombrowski, 2018; McGill, Dombrowski & Canivez, 2018).   

One of the more empirical ways to understand the nature of intelligence is to investigate 

the theoretical structure presumed to undergird our tests of cognitive ability.  Typically, this is 

accomplished through factor analysis.  Although it is recognized that intelligence should not 

solely be defined in a narrow, mechanistic way, as this will overlook other dimensions of 

intellectual ability, the use of factor analysis portends to offer insight into understanding the 

construct of intelligence, the theories related to it, and the interpretive methods used to 

understand the constructs measured by tests thought to reflect that psychological attribute.   

Publishers of commercial ability measures present detailed information within their 

technical manuals including an overview of an instrument’s theoretical orientation and validity 

analyses.  One type of validity, structural or factorial validity, is given extensive coverage in a 

test’s technical manual and may be established through the use of exploratory and/or 

confirmatory factor analyses.  Structural validity is arguably the most important type of validity 

evidence as it sets the stage for all other aspects of validity (Keith & Kranzler, 1999).  Put 

simply, structural validity determines whether an instrument is consistent with theory and 

subsequently how an instrument should be interpreted.   

Millions of individuals are administered IQ tests annually. Many of these administrations 

involve high stakes decisions for children in a K-12 setting; thus, the importance of having a 

stable test structure is of paramount importance.  Over the past two decades independent research 

has questioned the theoretical structure of frequently administered IQ tests (Canivez, 2008; 

Canivez, Watkins & Dombrowski, 2018; Dombrowski, 2013; Dombrowski, Watkins & Brogan, 

2009; Dombrowski, McGill & Canivez, 2017, 2018) and a significant amount of research 

attention has focused particularly on cognitive measures that may be administered to children 

and adolescents.  The majority of these investigations have yielded a structure divergent not only 

with that found in the test publisher’s technical manual, but also with other independent studies 

(e.g., Canivez & Watkins, 2016; Dombrowski, McGill & Canivez, 2018; Dombrowski, McGill, 

Canivez & Peterson, 2019; Keith, Low, Reynolds, Patel & Ridley, 2010; McGill & Dombrowski, 

2018; Reynolds & Keith, 2017; Reynolds, Keith, Fine Fisher & Low, 2007).  This is cause for 

considerable concern, and indicates a possible replication problem (Cronbach & Meehl, 1955).  

If a test does not measure what it purports to measure, or measures a construct differently 

depending upon the researcher investigating the instrument or the model/method used by the 

researcher, it may be difficult to have confidence in the instrument’s underlying theoretical 

structure and in the applied, interpretive conclusions that may be drawn from it (Gorsuch, 1983; 

Meehl, 1990).   
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Review of the Structural Validity Literature 

As previously mentioned, there is a considerable body of independent factorial validity 

research from the past two decades that has questioned the theoretical structure of many 

commercial IQ tests. This article will primarily review the structural validity evidence from four 

of the most frequently administered IQ tests for children and adolescents (Sotelo-Dynega & 

Dixon, 2014) since they will be the subject of inquiry in this article: the Wechsler Intelligence 

Scale for Children-Fifth Edition (WISC-V; Wechsler, 2014), Woodcock-Johnson IV Tests of 

Cognitive Abilities (WJ IV Cognitive; Schrank, McGrew & Mather, 2014), Kaufman 

Assessment Battery for Children-Second Edition (KABC-II; Kaufman & Kaufman, 2004), and 

the Differential Abilities Scales-Second Edition (DAS-II; Elliot, 2007). For the sake of 

parsimony, we will focus our review on factor analytic studies that have used the total test 

battery (core and supplemental subtests) as the basis for investigation since this more completely 

permits an analysis of linkage with CHC theory.  

WISC-V. Canivez and Watkins (2016) used both exploratory factor analysis (EFA; the 

Schmid-Leiman [SL; Schmid & Leiman, 1957] approximate bifactor analysis) and confirmatory 

factor analysis (CFA) to investigate the total WISC-V battery.  Canivez and Watkin’s study 

suggested that the WISC-V is a four factor instrument reflecting one general and four group 

factors (e.g., Verbal Comprehension (Gc), Working Memory (Gsm), Processing Speed (Gs), and 

Perceptual Reasoning [PR]).  It should be noted that this model is consistent with previous 

Wechsler theory. Canivez and Watkins first used EFA to guide the determination of the 

instrument’s factor structure and relied upon subsequent CFA analyses to establish the best 

model fit.  Canivez and Watkins compared numerous competing models including all of the 

models presented in the technical manual.  Their results suggested that a four bifactor model, 

consistent with their EFA results, had the best model fit.  This same result was replicated by 

additional researchers who used both the normative data set and independent clinical samples 

(Canivez, McGill, Dombrowski, Watkins, Pritchard & Jacobson, 2018; Canivez, Watkins & 

Dombrowski, 2016; Dombrowski, Canivez & Watkins, 2018).   

Even so, there are two WISC-V studies that found a different structure from that of 

Canivez and Watkins as well as the test publisher.  Dombrowski, Canivez, Watkins and 

Beaujean (2015) used exploratory bifactor analysis (EBFA; Jennrich & Bentler, 2011) and 

located three group factors and one general factor.  Curiously, the Verbal Comprehension factor 

was not located. Dombrowski et al. (2015) opined that the reason for this anomalous result was 

that the verbal subtests, which themselves are predominantly g loaded, collapsed onto the general 

factor.  They acknowledged that this finding was inconsistent with decades of research into the 

Wechsler scales and could be an artifact of the recently created EBFA method that tends to 

display group factor collapse in the presence of a strong general factor (Mansolf & Reise, 2016).   

In contrast, Reynolds and Keith (2017) used CFA to argue that the WISC-V’s structure 

was hierarchical, containing five group factors plus a general factor and was essentially 

consistent with the theoretically proposed structure (e.g., Gc, Gf, Gv, Gsm & Gs)1 presented in 

                                                           
1 Throughout this article the following may serve as a legend for the CHC abbreviations: 

Crystalized Intelligence/Knowledge [Gc], Fluid Intelligence/Reasoning [Gf], Visual-Processing 

[Gv], Short-Term Memory/Working Memory [Gsm], Long-Term Retrieval [Glr], Processing 

Speed [Gs], and Auditory Processing [Ga]  



MONTE CARLO MODELING OF IQ TEST STRUCTURE     6  

the technical manual. Reynolds and Keith engaged in a series of adjustments (~20) to arrive at 

their final, validated model.  Specifically, this entailed having the Arithmetic subtest load on 

both the Working Memory factor as well as the second-order general factor.  Second, Reynolds 

and Keith (2017) also correlated the disturbance between the Gv and Gf group factors2.  Whereas 

some researchers support circumspect model post hoc model fitting (e.g., Bryne, 2005), others 

caution against its use (e.g., Brown, 2015; Cucina & Howardson, 2017; Kerr, 1998; Kline, 2016). 

To be fair, there is nothing inherently wrong with this practice; however, it should be noted that 

exploratory model fitting attempts may produce structures that capitalize on chance and may not 

replicate under more stringent measurement conditions (MacCallum, Roznowski, & Neocowitz, 

1992; Meehl, 1978). In a subsequent CFA analysis of the Canadian version of the WISC-V by 

Watkins, Dombrowski, and Canivez (2018), the higher-order model posited by Reynolds and 

Keith (2017) did not yield the best fit to the data. Instead results supported a four-factor bifactor 

model consistent with Canivez and Watkins (2016).  

 WJ IV Cognitive. The only extant research to independently investigate the WJ IV 

Cognitive’s structure was that reported by Dombrowski, McGill and Canivez (2017, 2018). 

Dombrowski et al. conducted two separate studies: an EFA study using the SL approximate 

bifactor analysis followed by a CFA study to investigate the results determined by EFA.  Across 

both studies, these researchers contended that a one general and four group (e.g., Gc, PR, Gsm, 

and Gs) factor approximate SL bifactor structure, quite different from the test publisher’s 

proposed seven factor higher order structure (i.e., Gc, Gf, Gv, Gsm, Glr, Ga, and Gs), was the 

structure with the best global and local fit at ages 9-13.  The structure uncovered by Dombrowski 

et al. was reminiscent of the prior theoretical structure for the Wechsler Scales (e.g., WISC-IV; 

Wechsler, 2003). Thus, Dombrowski et al. questioned not only the theoretical orientation of the 

WJ IV Cognitive but also whether the instrument should be interpreted the way the technical 

manual suggested it should be interpreted.   

KABC-II. Reynolds, Keith, Fine, Fisher and Low (2007) used a higher order CFA to 

investigate the structure of the KABC-II.  Reynolds et al. incorporated only three adjustments to 

improve upon the test publisher’s model. This included correlating the error terms between 

Atlantis and Atlantis Delayed and Rebus and Rebus Delayed; specifying secondary loadings for 

the Hand Movements and Pattern Reasoning subtests; and placing Gestalt Closure on the Gv 

rather than the Gc factor, which is inconsistent with publisher theory. Thus, Reynolds et al. 

corroborated the existence of the test publisher’s Cattell-Horn-Carroll (CHC; Carroll, 1993; Horn 

& Cattell, 1966; Schneider & McGrew, 2018) five factor higher-order theoretical structure (e.g., 

Gc, Gf, Gv, Glr, and Gsm).  Desired simple structure was attained with the few noted exceptions. 

On the other hand, McGill and Dombrowski (2018) using the SL approximate bifactor procedure 

found that the structure was significantly different from that proposed in the Technical Manual.  

McGill and Dombrowski’s exploratory study revealed one general factor and four group factors 

(e.g., Gc, PR, Gsm, and Glr) structure.  Whereas Reynold’s et al.’s study obtained a structure 

largely consistent with that theoretically proposed in the technical manual, McGill and 

                                                           
 
2 In previous WISC-V CFA studies, including those furnished in the Technical Manual, The path 

between g and Gf often equaled or exceeded unity suggesting an impermissible solution. 

Addition of this parameter appeared to resolve that issue. 
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Dombrowski’s study yielded a structure that deviated quite significantly from publisher theory. 

Nonetheless, simple structure was readily attained in McGill and Dombrowski’s model. 

DAS-II. Both Keith et al. (2010) and Dombrowski, McGill, Canivez and Peterson (2018) 

independently investigated the structure of the DAS-II.  Dombrowski et al used the SL 

approximate bifactor procedure and located six distinct CHC group factors (Gc, Gf, Gv, Gsm, 

Gs, and Glr); however, Early Number Concepts (Gf/Gc) and Picture Similarities (Gf) saliently 

loaded only on the general factor.  All other subtests were consistent with their theoretically 

posited factors and Dombrowski et al. concluded that simple structure was attained. Earlier, 

Keith et al. investigated the structure of the DAS-II using higher order confirmatory factor 

analysis. The results of Keith et al.’s study suggested that the DAS-II reflects six higher order 

factors consistent with that proposed by the publisher.  Keith et al. incorporated several 

adjustments to arrive at the structure suggested by the test publisher. This included the need to 

correlate the disturbance terms between Gf and Gv, and place Verbal Comprehension on both the 

Gc and the Gf factors. Additionally, Keith et al. incorporated a correlated disturbance term 

between Recall of Designs and Copying.  Although Keith et al.’s study located the six posited 

CHC factors, it may be viewed as less parsimonious than that proposed by Dombrowski et al 

because of need for the additional model adjustments. Still, both studies located six CHC group 

factors with varying degree of consistency. 

Summary. Some studies have offered dramatically different results from that proposed 

within the instruments’ technical manuals; other studies have offered results demonstrating a 

greater consistency with posited CHC structures. Nevertheless, in almost all cases, the final 

structure found within the independent research has diverged from that proposed by the test 

publisher and, in some cases, even that produced by other independent research. Complex 

parameters are specified for certain tests (e.g., Reynolds & Keith, 2017) that are not consistently 

modeled or explored on other tests that purport to measure the same latent constructs.  Given 

these discrepancies, a factor analytic investigation, using multiple ability measures, and 

incorporating all posited models for each of those measures in the form of a psychometric meta-

analysis (i.e., Carroll, 1993) would be instructive for determining the nature and structuring of 

CHC variables across tests and, more generally whether a meta-theory largely derived from 

research summaries of the factor analytic literature such as CHC is viable (Meehl, 1990). This 

will reflect the first time that an investigation of this nature will be furnished in the literature.  

A Replication Crisis and a Possible Way Forward? 

In none of the above final, validated models do we see an exact replication of the CHC 

theoretical structure proposed by the publisher nor do we see independent research conclusions 

completely agree with each other.  Disparate results from the same datasets and even the same 

theory suggest the potential of a replication crisis (Cronbach & Meehl, 1955; Meehl, 1978) as 

seen in other areas of psychological science and other disciplines (Shrout & Rodgers, 2018).   

What conclusion from this disparate literature are we to trust for a particular instrument?  

Which study offers a way forward for the field?  Certainly, both global and local fit are important 

arbiters along with parsimony and theory.  Gorsuch (1983) noted that when multiple methods of 

factor analysis converge upon a structure then we can be more confident that it reflects the true 

structure for a given covariance matrix.  
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Although no method of modeling or no specific model can be viewed as beyond reproach 

(Box & Draper, 1987; Kline, 2016), Monte Carlo simulation can offer an elegant way forward by 

permitting an analysis of the structure of an instrument over numerous replications (Casey & 

Harden, 2014).  Simulation permits investigation of not just one study at a time but rather 

hundreds, if not thousands, limited only by computing power.  As a result it may well be a 

powerful tool to compare the theoretical structure of major IQ tests among the competing models 

offered by independent research and the test publisher, overcoming sampling limitations that 

frequently encumber factor analytic investigations.     

 Accordingly, the purpose of this study is to use Monte Carlo modeling to investigate 

the theoretical structure of the WISC-V, WJ IV Cognitive, KABC-2 and DAS-II, all of which 

were all developed to align with CHC theory.  As consensus on what these instruments measure 

remains elusive, simulation may be useful for comparing the results furnished across the 

psychometric literature and shedding insight into whether posited models are likely to be 

replicated across different measurement conditions. 

Method 

Data analyses involved several steps. First, the normative sample correlation matrices 

from WISC-V, DAS-II, KABC-II and WJ IV Cognitive were obtained from available technical 

manuals and/or extracted from normative datasets with permission from the test publisher.  For 

the WISC-V, the correlation matrix for the total sample across the 6 to 16 age range was 

available in the instrument’s technical manual.  Likewise, the WJ IV Cognitive technical manual 

provided the intercorrelation matrix among all subtests across all age ranges.  The matrices for 

ages 9 to 13 were utilized in this study as they were identical to the ones used by Dombrowski et 

al. (2017, 2018).  With the DAS-II and KABC-II, the respective technical manuals did not 

provide an intercorrelation matrix for participants who were administered every subtest.  

However, participants in the standardization sample across the 5 to 8 and 7 to 18 age ranges, 

respectively, were administered every core and supplementary subtest in the instrument.  Thus, 

the standardization data was used to create the correlation matrices for these measures at those 

age brackets. The resulting correlation matrices from the four instruments were used as the basis 

for MC simulation.     

Data Analyses 

Monte Carlo Simulation. The next step was to simulate the correlation matrix of each of 

the measures 1,000 times using Monte Carlo (MC) resampling methods (Metropolis & Ulam, 

1949). Resampling involves drawing multiple random samples of data from an assumed data 

generating process (DGP). In comparison to other simulation techniques, MC resampling draws 

samples in an iterative process from the observed data rather than a researcher-derived DGP. 

According to Casey and Harden (2014), if the observations in the observed data represent a 

random sample from the larger population, the samples generated through MC simulation can be 

assumed to approximate the distribution from this broader population. The sample size used for 

simulation was that reported in either the various instrument’s technical manuals or 

standardization sample: WISC-V (age 6-16, N = 2,200); WJ IV Cognitive (age 9-13, n = 1,572); 

DAS-2 (age 5-8, n = 787); and KABC-II (age 7-18, n = 1,142). 

Confirmatory Factor Analyses. Next, best fitting CHC measurement models that have 

been reported in the professional literature were tested for each instrument using CFA to 

determine which theoretical structure provided the best fit across 1,000 replications. For the 
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WISC-V, publisher theory, Canivez and Watkin’s (2016) four factor bifactor structure, and 

Reynolds and Keith’s (2017) five factor higher-order structure were examined. Also evaluated 

was Dombrowski et al.’s (2015) exploratory bifactor factor structure (one general and three 

group factors). For the WJ IV Cognitive, the BF models produced by Dombrowski and 

colleagues (2017, 2018) were examined along with the seven-factor higher-order model posited 

by the WJ IV Cognitive test publisher. For the DAS-II, publisher theory was explicated in 

addition to Keith et al.’s (2010) six factor higher-order structure alongside Dombrowski et al.’s 

(2018) EFA/SL approximate BF five factor structure across ages 5-83. Finally, for the KABC-II, 

a five factor SL approximate bifactor structure from McGill and Dombrowski (2018) and 

Reynolds et al. (2007) five factor higher order structure was evaluated across the age 5 to 8 time 

span in comparison to publisher theory.      

Model Fit. Global fit was examined iteratively using the models posited by publishers as 

a baseline.  The χ2 value was one of several metrics used for model comparison.  Lower values 

generally indicate better model fit.  Because of concerns about distortion of the χ2 value when 

larger samples are used (e.g., Kline, 2016), approximate fit indices were also referenced to 

further evaluate model selection (see Lai & Green, 2016).  The root mean square error of 

approximation (RMSEA), comparative fit index (CFI), and Tucker-Lewis index (TLI) were used 

to comprehensively assess all aspects of global model fit.  Although universally accepted 

criterion values for approximate fit indices do not exist (McDonald, 2010), generally accepted 

guidelines were referenced (Hu and Bentler, 1999).  In general, higher values indicate better fit 

for the CFI and TLI while lower values suggest better fit for the RMSEA. In particular, Hu and 

Bentler's (1999) decision-making rules were considered: CFI and TLI ≥ .90 combined with 

RMSEA ≤ .08 were criteria for adequate model fit while CFI/TLI ≥ 0.95 and RMSEA ≤ 0.06 

were indicative of good model fit. The Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) were also considered.  Because AIC and BIC do not have a 

meaningful scale, the model with the smallest AIC and BIC values were preferred, and 

considered the model most likely to replicate (Kline, 2016). Superior models required adequate 

to good overall fit and the indication of meaningfully better fit (ΔCFI > .01, ΔRMSEA > .015, 

∆AIC and ∆BIC >10) than alternative models (Burnham & Anderson, 2004; Cheung & 

Rensvold, 2002; Chen, 2007). Local fit was also considered, particularly parsimony of structure 

and utility of the model as basis for the creation of interpretive indices, as models should never 

be retained or rejected exclusively on the basis of global fit testing (Brown, 2015; Byrne, 2005).  

Metrics of interpretability were estimated and evaluated including coefficients omega-

hierarchical (ωH) and omega-hierarchical subscale (ωHS).  Although ωH and ωHS were initially 

conceptualized as model-based reliabilities and estimates of the reliability of unit-weighted 

scores produced by a given set of indicators (Reise, 2012; Rodriguez, Reise & Haviland, 2016; 

Watkins, 2017), they may also be conceptualized as a metric of construct interpretability of the 

resulting latent factors (Gustafsson & Åberg-Bengtsson, 2010). For most conventional IQ tests, 

                                                           
3 With the exception of the WISC-V, which included all normative participants, analyses of other 

measures were restricted to certain age brackets in order to comport with results reported in the 

professional literature. For example, the DAS-II and KABC-II contain multiple subtest measures 

that can only be administered at specific ages (i.e., early childhood). As a result, Keith et al. 

(2010) used the data from 5-8 age bracket as a focal point of their analyses on the DAS-II 

because those were the only participants who were administered all DAS-II subtests thus 

maximizing potential linkages to CHC theory.   
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the ωH coefficient represents the estimate of the general intelligence factor variance with 

variability from the group factors removed; the ωHS coefficient represents the group factor 

estimate with variability from all other group and general factors removed (Brunner, Nagy, & 

Wilhelm, 2012; Reise, 2012).  In general, the ωH/ωHS coefficient thresholds needed for confident 

clinical interpretation of general and group-factor based scales is a value of .50 but .75 is 

generally preferred (Reise, 2012; Reise et al., 2013). Additionally, Hancock and Mueller’s 

(2001) coefficient H was also calculated.  The H coefficient provides an estimate of how well a 

posited latent construct is (a) represented by a given set of indicators and (b) likely to be 

replicated across similar factor analytic studies. A value of .70 or higher is preferred for 

interpretation of factor indices (Hancock & Mueller, 2001; Rodriguez et al., 2016). Finally, the 

percentage of uncontaminated correlations (PUC) was estimated to provide a sense of how many 

of the correlations in the model inform directly on the general factor.  A PUC value of .70 or 

higher (along with explained common variance of .70 or higher) would suggest the measure is 

primarily unidimensional.    

Mplus 8.2 (Muthén and Muthén, 2017) was used first to simulate 1,000 datasets (i.e., 

replications) by essentially sampling from the population to which the normative correlation 

matrix applies for each of the aforementioned instruments and then to apply CFA using 

maximum likelihood (ML) estimation.  The number of replications should be chosen based on 

the purpose of the study, reach desired level of sampling variance, and/or obtain adequate power 

(Bandalos & Leite, 2013; Harwell, Stone, Hsu, & Kirisci, 1996). The reported range of 

replications used in studies involving latent variable models, such as this one, are 20 to 1,000, 

with a median of 200 (Powell & Schafer, 2001).  By using 1,000 replications for each normative 

correlation matrix in the current study, all average correlations across the 1,000 sampled 

correlation matrices matched the normative correlation matrix to at least three decimal places for 

each of the instruments examined. Omega coefficients, H, and PUC were calculated based upon 

the average of the standardized factor loadings across the 1,000 replications using Watkins’ 

(2013) Omega program.   

Results 

The application of CFA to the 1,000 simulated WISC-V, WJ IV Cognitive, DAS-II, and 

KABC-II correlation matrices is summarized in Table 1.  Results of Table 1 include the number 

of successful replications along with averaged CFA fit indices (i.e., chi-square, RMSEA, 

CFI/TLI, SMR, AIC, and BIC).  Tables 2 through 5 report the average sources of variances and 

metrics of interpretability for the models determined to have the best global and local fit.  This 

includes standardized estimates, explained common and total variance, communality/uniqueness, 

and metrics of interpretability including omega coefficients, PUC, and H.  As noted in Table 1, 

none of the structures posited by the publishers emerged as having superior fit to that arrived 

upon in the independent literature.  For clarity, best fitting model results are also summarized in 

Table 6.  

WISC-V 

CFA simulation results of the WISC-V primary and secondary 16 subtests are 

summarized in Table 1 while the best fitting model is presented in Table 2. These results 

compared the WISC-V technical manual’s five factor higher-order structure with several 

competing models investigated in the independent literature. This included a modified five factor 

higher-order model (Reynolds & Keith, 2017), a four factor bifactor model (Canivez & Watkins, 
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2016), and a three factor bifactor model (Dombrowski, Beaujean, Canivez & Watkins, 2015).  

As noted, the simulation results for the WISC-V revealed that the four bifactor structure [one 

general factor and four group factors (Gc, PRI, Gsm, & Gs)] reported by Canivez and Watkins 

(2016) was deemed superior to that of Reynolds and Keith (2017) in terms of global fit statistics 

and local fit.  This resulting structure is presented in Table 2. Nevertheless, this model was only 

able to converge in 987 of the 1,000 runs in comparison to all of the other models which had a 

perfect convergence rate. Dombrowski et al.’s (2015) EBFA model produced superior fit 

statistics to that produced by the test publisher but inferior to that of Canivez and Watkins and 

Reynolds and Keith.     

WJ IV Cognitive 

Simulation of the WJ IV Cognitive 18 subtest standard and extended battery is 

summarized in Table 1 while the best fitting simulated model is presented in Table 3.  These 

results compared the technical manual’s seven factor higher-order structure at ages 9 to 13 with 

Dombrowski et al’s (2017, 2018) structure, which was originally guided by both exploratory and 

confirmatory factor analyses.  Simulation results for the WJ IV Cognitive revealed that a four 

bifactor structure [one general and four group factors (Gc, PR, Gsm, & Gs)] reported by 

Dombrowski and colleagues produced the best overall fit.  Please see Table 3 for standardized 

coefficients, variance partitioning, and metrics of interpretability.  Of concern, the simulated 

model suggested by the test publisher produced several negative variance estimates and 

structural path coefficients indicative of model misspecification. All of the models converged in 

all the runs.  

KABC-II 

Simulation results of the KABC-II sixteen core and supplemental subtests is furnished in 

Table 1 while the best fitting simulated model is presented in Table 4.  The results compared the 

technical manual’s five factor higher order (Gc, Gf, Gv, Gsm, & Glr) structure with that of 

McGill and Dombrowski (2018), and that of Reynolds et al. (2007).  Simulation results for the 

KABC-II revealed that a five factor higher-order factor produced by Reynolds et al. (2007) was 

the preferred model, readily permitted all but two subtests to have primarily loadings on their 

theoretically proposed factors, and produced the best overall global and local fit. As previously 

mentioned, this model deviates slightly form the model suggested by the test publisher with 

additional parameters in the form of a theoretically inconsistent Gestalt Closure loading, subtest 

cross-loadings, and correlated residual terms between the Glr subtests and related Delayed Recall 

tasks. All models had a perfect convergence rate.  

DAS-II 

Simulation results of the DAS-II 20 core and diagnostic subtests is furnished in Table 1 

and the best fitting model is presented in Table 5.  The results compared the technical manual’s 

simulated six factor higher-order (Gc, Gf, Gv, Gsm, Gs, & Glr) structure, the SL approximate BF 

structure produced by Dombrowski, McGill, Canivez, & Peterson (2018), and the six factor 

higher-order model produced by Keith and colleagues (2010).  Simulation results for the DAS-II 

revealed that the six factor higher-order model produced by Keith et al. slightly edged out the 

model produced by Dombrowski and colleagues in terms of overall fit. Whereas the alternative 

BF model produced a superior CFI value, the higher-order model yielded better fit, in 
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comparison, on the TFI, RMSEA, and BIC indices. Additionally, whereas the higher-order 

model converged in all of the runs, the BF model failed to converge in 18 of the runs.  

Summary of Loadings, Variance Partitioning, and Metrics of Interpretability 

Table 6 summarizes the results for the CFA analyses for all four tests.  It is noted that the 

simulated independent research models were superior to all of the test publisher’s proposed 

theoretical models.  With two of the simulated models (e.g., Canivez and Watkins [2016]) with 

the WISC-V; and Dombrowski, McGill, & Canivez [2017, 2018] with the WJ IV Cognitive) the 

independent research arrived at very different structural conclusion from that of the test 

publisher.  With the other two models the CHC theoretical structure emerged as viable following 

model adjusting in the DAS-II and KABC-II although both resulting structures deviated slightly 

from that originally proposed by the publisher.   

Regardless of whether the final, validated structure involved a bifactor or higher-order 

model, across all of the best fitting models, the general factor accounted for over 29% of the  

total variance (29.6% to 38.0%) and anywhere from 60.8% to 73.0% of the  common variance. 

The general factor accounted for 4.0% to 58.0% (Median range: 27.0% to 41.5%) of the subtest 

variance. Across all models, the group factors accounted for a small proportion of the  total 

(0.2% to 6.2%) and common (0.5% to 12.8%) variance. The general and group factors across the 

four simulated analyses combined to measure 48.0% to 50.50% of the  variance, indicating that 

between 49.5% and 52.0% of the  variance was unexplained (i.e., unique variance). 

Omega hierarchical values ranged from .793 (WJ IV Cognitive) to .877 (DAS-II).  

Omega hierarchical subscale was generally insufficiently low for confident clinical interpretation 

except for the processing speed (Gs) group factors on the WISC-V and WJ IV Cognitive and the 

Glr factor on the DAS-II. Hancock and Mueller’s index of replicability (H) also supported 

interpretation at the level of the general factor with all values greater than .70. Consideration of 

PUC along with ECV suggested that the WISC-V and DAS-II are predominantly unidimensional 

(i.e., PUC and ECV >.70) while the WJ IV Cognitive and KABC-II approached 

unidimensionality. 

Discussion 

The results of this study have several implications for understanding the theory and 

interpretation of widely used commercial ability measures for children and adolescents.  As 

research, in particular structural validity research, on these measures has been used to refine and 

develop CHC theory (i.e., Schneider & McGrew, 2018), it may also have implications for our 

understanding of that particular model/theory of human cognitive abilities. First, in all cases the 

simulated structure of the independent research-derived models appear to be superior to the 

simulated structures proposed by test publishers. In some cases, such as the KABC-II and DAS-

II, simulation of the structure identified in independent research (i.e., Keith et al., 2010; 

Reynolds et al., 2007) was essentially consistent with, yet offered superior modification statistics 

relative to, the test publisher’s theoretically proposed five factor higher-order CHC structure 

requiring only nominal amendments to publisher theory.   

In other cases, such as the WISC-V and the WJ IV Cognitive, simulation of the 

respective independent research of Canivez and Watkins (2016) and Dombrowski, McGill, & 

Canivez (2017, 2018) resulted in a considerably different model from that proposed by the 
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publishers for those instruments. Of concern, several group factors (as suggested by CHC theory) 

were not located and the positioning of the general factor was different in many of the 

researcher-derived models. The results on the WJ IV Cognitive are noteworthy given that the 

instrument is likely to serve as the preeminent reference measure for CHC experimentation and 

refinement over the course of the next decade.  

Whereas publisher theory (and some independent research) suggests that the influence of 

general intelligence on the manifest variables (MVs) is mediated through the first-order group 

factors, an alternative bifactor conceptualization where the general factor has direct influence on 

the MVs provided the best fit to these data in some cases. Although Beaujean (2015) has argued 

that Carroll favored a bifactor model when developing his three-stratum model (a forerunner to 

CHC), other scholars (e.g., Keith & Reynolds, 2012) have argued that a bifactor model is not 

theoretically compatible with modern conceptualizations of intelligence and it is expected that 

this debate will continue among intelligence scholars for the foreseeable future. 

Replication of Posited Factor Structures 

 Replication is often referred to as the “gold standard” of science and much attention has 

been focused lately on the reproducibility of research in the psychological sciences (Schmidt & 

Oh, 2016). Although direct replication—where all aspects of a research design are 

reconstituted—is often difficult, if not impossible, Lilienfeld (2018) argued that construct 

validation of psychological tests is potentially an area where direct replication of published 

findings should be expected given researchers often have access to the same datasets and 

relevant model parameters are routinely disclosed in published works.  

 In the present study, all but two of the rival models that were explicated had a perfect 

replication rate across the 1,000 simulation runs and the two outliers (Dombrowski et al., 2019 

[DAS-II]; Dombrowski, McGill, & Canivez, 2017, 2018 [WJ IV Cognitive]) were able to be 

replicated in over 98% of the runs. Although methodologists have expressed concern about the 

potential replicability of models derived from specification searches (e.g., MacCallum et al., 

1992) and the presence of potentially questionable research practices in the CFA validation 

literature (Beaujean, 2016), these results indicate that the models that are posited for commercial 

ability measures are able to be replicated and that it may be possible even to replicate complexly 

determined models when large sample sizes are employed. Nevertheless, Hutchinson (1998) 

demonstrated that modifications tend to be unstable unless sample sizes are quite large (e.g., > 

1,200) and that caution should be exercised in interpreting modified models with smaller samples 

then the ones employed in this investigation. It is worth noting that the normative samples for 

most commercial ability measures contain approximately 1,000-2,000 participants.   

 However, these results also suggest that reliance on a single factor analytic study to 

ascertain what an intelligence test measures and the structuring of variables for a given measure 

may be problematic. For example, there are now several posited models for the WISC-V in the 

professional literature, all of which were found to be replicable in the present study. Yet, when 

simulated against one another the results favor a more parsimonious model consistent with 

previous Wechsler Theory (Canivez & Watkins, 2016), even though a major goal of the revision 

was to align the test better with the CHC model. The discrepancies between publisher theory and 

the best fitting models identified by independent researchers for all of the tests that were 

evaluated in present study suggest that structural validation for a given measure is likely to 

evolve as subsequent independent research emerges in the years after an instrument is published.       
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Is Model Complexity Desirable: Theoretical Versus Practical Applications?  

As previously mentioned, a number of post hoc adjustments were needed in order to 

discover the best fitting models for the DAS-II and KABC-II. These models contain several 

complex parameters that depart from desired simple structure.  However, from an applied 

measurement perspective questions remain about how to adapt complexly determined theoretical 

models to a measurement instrument that will be scored and interpreted by clinical assessment 

professionals. Although it may be appropriate to engage in a series of model adjustments to help 

understand theory (i.e., CHC), this approach may be considered less appropriate when an 

interpretable scale is of importance.  When creating instruments for the purpose of theory 

building, greater leniency toward the practice of model adjustment may well be afforded to the 

researcher than when attempting to build scales for interpretation. In a traditional reflective 

model of scale development researchers should guard against secondary loaded indicators, and 

latent constructs that require correlation of disturbance terms as it is unknown how these 

indicators and constructs should be scaled to create an interpretable score for a target group 

specific factor (Reise, 2012).  Should the correlated disturbance terms be ignored? Should the 

indicator be assigned to the factor with the highest loading?  Should the indicator be assigned to 

both factors? These are yet unanswered questions but it could be argued that traditional scale 

development would favor either eliminating the cross loaded indicator or reconsidering the final, 

adopted structure if there is the finding of latent group constructs that need significant 

modifications in order for a permissible solution to converge (Brown, 2015).   

For instance, consider the Reynolds and Keith (2017) model that claimed the WISC-V 

can be interpreted as recommended by the publisher.  How would a group factor score be 

appropriately derived from an instrument that has an indicator (i.e., Arithmetic) load on a latent 

group factor and a higher-order general factor that also contributes to that same group factor?  

Although theory building may permit this type of model adjusting we contend that an instrument 

created primarily for the purpose of clinical assessment should not be so complexly determined. 

Whereas this complexity may better reflect the true nature of the relations between cognitive 

abilities (Schneider & McGrew, 2018), it is important to consider that commercial ability 

measures continue to be constructed in a way that assumes perfect cluster structure. 

Higher-Order Versus Bifactor 

There is a second interesting line of thinking that emerges from the agglomeration of the 

results of this study. Although independent research may point to a possible dichotomy when 

discussing whether a bifactor or higher-order model is the “best” model for conceptualizing the 

structure of our IQ tests, it appears that this conclusion is more nuanced.  Within this simulation 

study, the best model fit depended upon the specific instrument investigated.  With the WISC-V 

and WJ IV Cognitive the bifactor model appears superior in terms of both global and local fit.  

With the KABC-II the higher-order model appears to fit the data better than the bifactor model.  

With the DAS-II simple structure is for the most part attained and the data fit either model fairly 

well. Thus, the results of this study suggest, from at least a theoretical perspective (and perhaps 

even from an applied measurement perspective), the preference for a higher-order or bifactor 

conceptualization of IQ test structure may depend upon context (i.e., the instrument under 

investigation and the sample being evaluated).  

Given concerns in the literature that have been raised about whether better fitting bifactor 

models are an artifact of the model itself (Murray & Johnson, 2013; Reise, Kim, Mansolf, & 
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Widaman, 2016) there is not consistent agreement regarding whether the bifactor model 

represents a viable theory for approximating the structure of intelligence. On the one hand, 

Reynolds and Keith (2013) argued in favor of the higher-order model suggesting that “…higher-

order models are theoretically more defensible, more consistent with relevant intelligence theory 

(e.g., Jensen, 1998), than are less constrained hierarchical [bifactor] models" (p. 66).   

On the other hand, several researchers (e.g., Beaujean, 2015; Brunner et al., 2012; 

Gignac, 2006, 2008; Gignac & Watkins, 2013; Gustafsson & Balke, 1993) have posited a 

bifactor theoretical conceptualization of intelligence contending that general intelligence is the 

most substantive factor in a battery of cognitive tests (and subtests) so g should be modeled 

directly. In support, these researchers posit that Spearman’s (1927) and Carroll’s (1993) 

conceptualization of intelligence is likely better  reflected by the bifactor model since the general 

factor is directly involved in all observed cognitive abilities, not indirectly involved, or mediated 

by other factors. Thus, this position would argue that it is the higher-order model that requires 

greater theoretical justification as full mediation of the general factor by the group factors may 

not reflect the reality of how intelligence operates at least within our IQ tests.  Still others have 

suggested that it might be best to regard the bifactor model as useful primarily for variance 

partitioning and clarifying how psychological tests should be interpreted in clinical practice 

(Bonifay, Lane, & Reise, 2017). The debate over whether the bifactor or higher-order model is 

“superior,” or whether the bifactor model is best used as a tool for variance partitioning for 

purpose of interpretation remains unresolved and in need of further discussion.       

Implications for the Clinical Assessment of Intelligence 

The next issue to be addressed moves us more directly into the realm of clinical 

interpretation.  Should the group factors be interpreted the way suggested in the respective test 

publisher’s technical manuals? As previously mentioned, two of the simulated instruments 

located the theoretically proposed CHC group factors (yet not all subtests aligned according to 

publisher theory) but two did not.  An empirically-guided approach would be to cease 

interpretation of the WISC-V and WJ IV Cognitive the way suggested in their respective 

technical manuals (or at least eschew the interpretation of specific scores).  We cannot have 

confidence in a publisher’s proposed factor structures when subtests do not load on their 

theoretically proposed group factors. On the other hand, how are we to interpret an instrument 

when most subtests aligned with their theoretically proposed factors and all theoretically 

proposed factors emerged as in the case of the KABC-II and DAS-II. Should we just move 

forward with interpretation basing our decision to do so solely on basis of presumed theoretical 

alignment (i.e., CHC)?    

The answer to this question is that theoretical alignment of subtests with group factors is 

a necessary but insufficient condition for interpretation.  Although alignment of group factors 

with theory is important, the consideration of variance partitioning and metrics of interpretability 

is equally important and should be an essential arbiter of the decision to interpret an intelligence 

test. Regardless of whether one adopts a higher-order or bifactor conceptualization of IQ test 

structure the results of this simulation suggest that our IQ tests may be confidently interpreted at 

the general factor level but caution should be exercised when moving to an interpretation at the 

group factor level.  With the WISC-V and WJ IV Cognitive only the Gs-derived index (see Table 

6) may be confidently interpreted. With the DAS-II only the Glr index may be interpreted 
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beyond general intelligence.  In the KABC-II none of the indices contained sufficient variance 

for confident clinical interpretation.   

 It is unknown why the structure posited in the various IQ assessment’s technical manuals 

have worse fit than that of independent research?  It is understood that the creation of an IQ test 

is a costly enterprise. As a result, the potential threat of confirmation should be considered, 

especially when a preferred theoretical structure is disclosed well in advance of formal model 

testing (e.g., Weiss, Keith, Zhu, & Chen, 2013). To guard against the effects of sunk costs, test 

publishers interested in scale development should consider creating a pilot study where the 

battery is administered to a small group of participants and EFA and CFA is used to establish 

initial validity evidence. Then MC modeling can be used as a tool to test the replicability of 

various models. In this way, problematic models may be identified and addressed before 

commencing with large scale standardization efforts.  

Study Limitations 

We stipulate that MC simulation is not a panacea for the ills of poor modeling in IQ 

assessment.  The simulation itself should be predicated upon a plausible theoretical 

conceptualization.  If the theory itself is deficient then the resulting MC model based upon that 

theory could result in the adoption and reification of an erroneous model.  Additionally, although 

the present study employed CHC as a theoretical framework for interpreting factor analytic 

results, it is important to acknowledge that, despite the attention CHC has received in the 

psychometric literature over the course of the last 20 years, other plausible models for 

intelligence structures have been proposed during that same time span. For example, a more 

parsimonious model adapted from Vernon’s (1950) hierarchical model positing verbal, 

perceptual, and image rotation group factors (VPR) has been found to fit several large cognitive 

datasets better than CHC (Major, Johnson, & Deary, 2012). Although McGrew (2009) has 

acknowledged these findings and has called for VPR to be considered in future CHC research, 

VPR has, thus far, received scant attention in the applied validity literature.  Finally, the 

simulations in the study are based on the normative data.  It is not clear whether these results will 

generalize to clinical populations, and additional research on this topic is necessary.      

Conclusion 

It is believed that this study will serve as a useful overview, and subsequent replication, 

of the structure of prominent commercial ability measures. It suggests the inconsistent alignment 

with CHC theory in two instruments but not in two others.  It coheres around the conclusion that 

our IQ tests, whether theoretically consistent or not, are predominantly measures of general 

ability and may only nominally measure many of the group factors posited by publisher theory 

and independent researchers (e.g., Benson, Beaujean, McGill,  & Dombrowski, 2018; Carretta & 

Ree, 2001; Carroll, 1993, 1995; 2003; Cucina & Howardson, 2017). More importantly, it raises 

concern about omnibus theories of intelligence (i.e., CHC) that have been developed largely on 

the basis of research summaries. As illustrated in the present study, the CHC factor analytic 

literature is complex and inconsistent. As conceptualized in modern commercial ability 

measures, questions remain about the nature and influence of the general factor, the “true” 

structure of intelligence, how many group factors exist, and whether their measurement can be 

replicated consistently across tests that are derived from the same theory, and purport to measure 

the same constructs. To be clear we are not suggesting that CHC theory, as presently constructed, 

lacks verisimilitude. We are simply encouraging researchers and practitioners to consider these 
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limitations when consulting summaries of the CHC factor-analytic literature and using those 

resources as a focal point for guiding clinical assessment. 
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Table1 

 

Monte Carlo Simulation of Posited Models for Prominent Commercial Ability Measures (Average Fit Statistics Across 1,000 Replications) 

 

 

Model 

 

χ2  
 

df 

 

CFI 

 

TLI 

 

SRMR 

 

RMSEA 

 

BIC 

 

AIC 

 

Replications 

 WISC-V  

BF (Canivez & Watkins, 2016) 401.8 88 0.980 0.973 0.024 0.040 84982 84617 987 

HO (Reynolds & Keith , 2017) 437.7 97 0.978 0.973 0.026 0.040 84948 84635 1000 

HO (Publisher Theory) 1095.4 98 0.936 0.922 0.108 0.068 85598 85290 1000 

BF (Dombrowski et al., 2015) 697.3 93 0.961 0.95 0.038 0.054 85238 84902 1000 

   

 WJ IV Cognitive  

BF (Dombrowski, McGill & Canivez, 2017, 2018) 1669.3 118 0.867 0.827 0.047 0.091 70657 70277 1000 

HO Publisher Theorya 2046.4 128 0.835 0.803 0.056 0.098 70961 70634 1000 

          

   

 KABC-II  

HO (Reynolds et al., 2007) 530.0 95 0.971 0.964 0.029 0.047 77515 77195 1000 

BF (McGill & Dombrowski, 2017)  661.4 88 0.962 0.949 0.036 0.057 77667 77307 1000 

HO (Publisher Theory)  1437.6 97 0.912 0.891 0.046 0.083 78406 78097 1000 

   

 DAS-II  

HO (Keith et al., 2010) 522.5 161 0.949 0.940 0.035 0.053 38320 37998 1000 

BF (Dombrowski, McGill & Canivez, & Peterson, 2018)  509.9 155 0.951 0.939 0.036 0.054 38348 37998 982 

HO (Publisher Theory)  616.0 164 0.936 0.926 0.040 0.059 38394 38085 1000 

 

Note. CFI = comparative fit index; TLI = Tucker-Lewis Index; SRMR = standardized root mean square; RMSEA = root mean square error of approximation; BIC = Bayesian 

Information Criterion; AIC = Akaike’s Information Criterion. BF = bifactor; HO = higher-order.  

 
aWJ IV Cog publisher theory reported negative residual variance of -2.29 and -0.043 on Ga and a standardized parameter estimate of g on Ga of 1.13.  Bold text illustrates best 

fitting model. 
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Table 2 

Average Sources of Variance for WISC-V According to a Bifactor Model (Canivez & Watkins, 2016)  

 

 General  

 

Verbal 

Comprehension 

(Gc)  

Perceptual 

Reasoning 

(Gf/Gv)  

Working 

Memory 

(Gsm)  

Processing 

Speed (Gs)    

Subtest b S2  b S2  b S2  b S2  b S2  h2 u2 

Similarities (Gc) .72 .52  .35 .12           .64 .36 

Vocabulary (Gc) .73 .53  .47 .22           .74 .26 

Information (Gc) .72 .52  .38 .15           .67 .33 

Comprehension (Gc) .63 .39  .32 .10           .50 .50 

Block Design (Gv) .64 .41     .38 .14        .56 .45 

Visual Puzzles (Gv) .65 .42     .50 .25        .69 .32 

Matrix Reasoning (Gf) .64 .41     .13 .02        .43 .57 

Figure Weights (Gf) .65 .42     .16 .03        .45 .55 

Picture Concepts (Gf) .53 .28     .06 .00        .29 .71 

Arithmetic (Gsm/Gf/Gc) .74 .54        .49 .24     .56 .44 

Digit Span (Gsm) .66 .44        .13 .02     .68 .32 

Picture Span (Gsm) .55 .30        .30 .09     .39 .61 

Letter–Number Seq. (Gsm)  .65 .42        .45 .20     .63 .37 

Coding (Gs) .37 .13           .63 .39  .53 .47 

Symbol Search (Gs) .43 .18           .68 .46  .64 .36 

Cancellation (Gs) .19 .04           .37 .14  .17 .83 

Total Variance  .372   .037   .027   .035   .062  .48 .52 

Common Variance  .696   .069   .051   .065   .115    

ωH/ωHS   .844   .302   .110   .181   .518    

H  .915   .567   .354   .407   .626    

PUC  .792                

 

Note. b = standardized loading of subtest on factor; S2 = variance explained in the subtest; h2 = communality; u2 = uniqueness; ωH = Omega-

hierarchical (general factor), ωHS  = Omega-hierarchical subscale (group factors), H = construct reliability or replicability index, PUC = 

percentage of uncontaminated correlations. Posited group factor alignment in parentheses.  
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Table 3 

 

Average Sources of WJ IV Variance According to a Bifactor Model (Dombrowski et al., 2017, 2018) 

 

     

 g  

Working 

Memory (Gsm) 

Perceptual 

Reasoning 

Processing Speed 

(Gs) 

Verbal Ability 

(Gc)   

Subtest b S2  b S2 b S2 b S2 b S2 h2 u2 

Verbal Attention (Gwm) .59 .35  .44 .20       .55 .45 

Memory for Words (Aud Mem) .52 .27  .49 .24       .51 .49 

Object Number Sequence (Gsm) .63 .39  .36 .13       .52 .48 

Nonword Repetition (Ga) .46 .21  .36 .13       .35 .65 

Phonological Processing (Ga) .62 .38  .24 .06       .44 .56 

Numbers Reversed (Gsm) .57 .33  .16 .03       .36 .64 

Visualization (Gv) .51 .26    .50 .25     .51 .49 

Visual-Auditory Learning (Glr) .43 .19    .38 .14     .34 .67 

Picture Recognition (Gv) .35 .12    .43 .18     .31 .69 

Analysis-Synthesis (Gf) .62 .38    .31 .10     .48 .52 

Concept Formation (Gf) .63 .39    .21 .05     .44 .56 

Story Recall (Glr) .52 .27    .19 .04     .30 .70 

Letter-Pattern Matching (Gs) .50 .25      .60 .36   .62 .38 

Number-Pattern Matching (PerSpd) .49 .24      .60 .36   .61 .39 

Pair Cancellation (Gs) .41 .17      .61 .37   .55 .45 

Number Series (Gf) .66 .43      .13 .02   .45 .55 

Oral Vocabulary (Gc) .67 .45        .61 .37 .83 .17 

General Information (Gc) .50 .25        .61 .37 .62 .38 

Total Variance  .296  .043 .042 .062               .042 .487 .513 

Common Variance  .608  .088 .086 .128 .085    

ωH/ωHS     .793  .221 .239 .525 .436   

H  .890  .485 .485 .695 .542   

PUC  .768        

 

Note. b = factor loading, S2= variance explained, h2= communality, u2= uniqueness,  ωH = Omega hierarchical (g),  ωHS = Omega hierarchical subscale (group 

factors). H =construct replicability. Posited group factor alignment in parentheses.  
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Table 4 

 

Average Sources of KABC-II Variance According to a Higher-Order Model  (Reynolds et al., 2007) 

 

 

             

Residualized 
     

Residualized 
     

Residualized 
     

Residualized 
     

Residualized 
    

  
g S2 Gc S2 Gc S2 Gv S2 Gv S2 Gf S2 Gf S2 Glr S2 Glr S2 Gsm S2 Gsm S2 h²  u2 

Verb. Knowledge (Gc) 
 

.70 .49 .84 .71 .47 .22 
                

.71 .29 

Riddles (Gc) 
 

.72 .53 .87 .76 .49 .24 
                

.76 .24 

Ex. Vocabulary (Gc) 
 

.69 .48 .83 .69 .46 .22 
                

.69 .31 

Gestalt Closure (Gv) 
 

.39 .15 .47 .22 .26 .07 
                

.22 .78 

Triangles (Gv) 
 

.62 .38 
    

.72 .51 .36 .13 
            

.51 .49 

Rover (Gv) 
 

.51 .26 
    

.59 .34 .30 .09 
            

.34 .66 

Block Counting (Gv)  
 

.52 .28 
    

.61 .37 .30 .09 
            

.37 .63 

Pattern Reasoning (Gf) 
 

.34 .12 
    

.36 .13 .64 .41 .40 .16 .64 .41 
        

.52 .48 

Story Completion (Gf) 
 

.62 .39 
        

.65 .42 .18 .03 
        

.42 .58 

Hand Mov. (Gsm) 
 

.34 .12 
        

.36 .13 .47 .22 
    

.29 .08 .47 .22 .34 .66 

Atlantis Delayed (Glr) 
 

.44 .19 
            

.55 .30 .33 .11 
    

.30 .70 

Rebus Delayed (Glr) 
 

.62 .39 
            

.78 .61 .47 .23 
    

.62 .38 

Atlantis (Glr) 
 

.52 .27 
            

.65 .43 .39 .15 
    

.43 .58 

Rebus (Glr) 
 

.65 .42 
            

.82 .66 .49 .24 
    

.66 .34 

Number Recall (Gsm) 
 

.44 .19 
                

.69 .48 .54 .29 .48 .52 

Word Order (Gsm) 
 

.51 .26 
                

.81 .66 .63 .40 .66 .34 

Total Variance 
  

.308 
   

.046 
   

.019 
   

.039 
   

.046 
   

.043 .502 .498 

ECV 
  

.614 
   

.092 
   

.039 
   

.078 
   

.091 
   

.085 
  

ωH/ωHS    

  
.822 

 
  

 
.264 

 
  

 
.170 

   
.328 

   
.288 

 
  

 
.265 

  

H 
  

.888  

 

  
.485 

   
.257 

   
.503 

   
.474 

   
.517 

  

PUC 
  

.842 
                      

                          

Second Order Loadings 
                       

Gc 
 

.830 
                       

Gv 
 

.864 
                       

Gf 
 

.960 
                       

Glr 
 

.797 
                       

Gwm   .631                                                                         
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Note. Residualized using the following formula: √𝑅2 − (𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔)2. For Hand Movements and Pattern Reasoning the indicator with the higher loading was used to determine variance calculations and 

omega estimates. Correlated residuals: Atlantis with Atlantis Delayed and Rebus with Rebus Delayed. S2= variance explained, h2= communality, u2= uniqueness, Posited group factor alignment in 

parentheses. 
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Table 5 

 

Average Sources of DAS-II Variance According to a Higher-Order Model (Keith et al., 2010) 

                            
          Residualized     Residualized     Residualized     Residualized     Residualized     Residualized   

 g S2 Gc S2 Gc S2 Gv S2 Gv S2 Gf S2 Gf S2 Glr S2 Glr S2 Gsm S2 Gsm S2 Gs S2 Gs S2 h²  

NV .63 .40 .74 .55 .39 .15                     .55 

WD .62 .38 .73 .53 .38 .15                     .53 

VS .67 .45 .79 .62 .41 .17                     .62 

VC .39 .15 .46 .21 .57 .32     .27 .07 .33 .11             .47 

RD .64 .41     .72 .52 .33 .11                 .52 

CP .58 .34     .66 .43 .30 .09                 .43 

LL .60 .36     .67 .45 .31 .10                 .45 

PA  .70 .49     .79 .62 .36 .13                 .62 

RP .49 .24     .55 .30 .25 .06                 .30 

MA .63 .39         .69 .47 .33 .11             .48 

SQ .72 .52         .79 .63 .30 .09             .63 

EN .66 .44         .73 .53 .30 .09             .53 

PS .50 .25         .55 .30 .23 .05             .30 

OI .51 .26             .89 .79 .73 .53         .79 

OD .43 .19             .75 .56 .62 .38         .57 

DB .71 .50                 .74 .55 .21 .04     .55 

DF .64 .41                 .67 .44 .19 .03     .44 

SO .75 .56                 .78 .61 .21 .05     .61 

IP .42 .18                     .56 .31 .36 .13 .31 

RN .48 .23                     .64 .40 .42 .17 .41 

Total Var.  .357    .040    .025    .017    .045    .006    .015 .505 

ECV  .708    .078    .049    .033    .090    .012    .030  

ωH/ωHS  .877     .299     .170    .139    .545     .060    .225  

H  .924    .508    .352    .273    .638    .115    .266  

PUC  .858                          

                            
Second Order Loadings                         
Gc .851                           
Gv .887                           
Gf .912                           
Glr .573                           
Gsm .961                           



MONTE CARLO MODELING OF IQ TEST STRUCTURE     33  

Gs .759                                                     
 

Note. CP = Copying; DB = Digits Backward, DF = Digits Forward, EN = Early Number Concepts, IP = Speed of Information Processing, LL = Matching Letter Like Forms, MA = Matrices, NV = 

Naming Vocabulary, OD = Recall of Objects-Delayed, OI = Recall of Objects-Immediate, PA = Pattern Construction-Alternate, PS = Picture Similarities, RD = Recall of Designs, RN = Rapid Naming, 

SO = Recall of Sequential Order, SQ = Sequential & Quantitative Reasoning, VC = Verbal Comprehension, VS = Verbal Similarities, WD = Word Definitions, RP = Recognition of Pictures. S2 = 

variance explained; h2 =  communality; ωH = omega hierarchical; ωHS = omerga hierarchical subscale.  Residualized using the following formula: √𝑅2 − (𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔)2.  For omega and variance calculations 

placed VC on Gc. Correlated disturbance: Gf with Gv; Copying with Recall of Designs. Verbal Comprehension crossloads on Gf. 
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Table 6  

 

Summary of variance partitioning and metrics of interpretability 
         
  

WISC-V 

 

 

 

WJ IV Cognitive 

 

 

 

KABC-II 

  

DAS-II 
 

Best Fitting Model Bifactor (Canivez & 

Watkins, 2016).  

 Bifactor (Dombrowski 

et al., 2017, 2018) 

 Higher Order (Reynolds et 

al., 2007) 

 Higher Order (Keith et al., 2010)  

         

General (g)         

  Total S2 (%) 37.26  29.6  30.8  35.7  

  Common S2 (%) 69.6  60.8  61.4  70.8  

  Subtest S2 (%) 4.0 to 54.0 

Median=41.5 

 12.0 to 45.0 

Median=27.0 

 .18 to 52.0 

Median=27.0 

 17.0 to 58.0 

Median=39.0 

 

  g Loadings .19 to .74  .35 to .67  .34 to .72  .39 to .75  

   

Subtests with poor g 

  loadings 

 

Coding,, Symbol 

Search & Cancellation 

  

Nonword rep, Vis Aud 

Lrning, Pic Rep, Num 

Pattern Match, Pair 

Cancellation 

  

Gest Closure, Pattern 

Reasoning, Hand Move, 

Atlantis Delayed & Number 

Recall 

  

Verbal Comp., Rec of Pictures, 

Recall Objects—Delayed, Speed 

of Info Processing; Rapid 

Naming 

 

         

Group         

  Total S2 (%) 2.7 to 6.2  4.2 to 6.2  1.9 to 4.6  .0.6 to 4.0  

  Common S2 (%) 5.1 to 11.5  8.5 to 12.8  3.9 to 9.2  1.2 to 9.0  

h2 48.0  48.7  50.2  50.5  

u2 52.0  51.3  49.8  49.5  

         

ωH  .844  .793  .822  .877  

ωHS  .110 to .518 

 

 ..221 to .525 

 

 .170 to .328  .06 to .545  

H general/H subtest .915/.407 to .626  .890/.485 to .695  .888/.257 to .517  .924/.115 to .638  

 

PUC 

 

.792 

  

.768 

  

.842 

  

.858 

 

         

Interpret Indices 

Confidently based on 

metrics of 

interpretability 

Processing Speed (Gs)  Processing Speed (Gs)  None  Glr  
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Contains all subtests 

suggested by publisher 

Theory 

 

 

Gc, Gsm & Gs 

 

 

Gc 

 

 

Gsm & Glr 

 

 

Gc,  Gv, Gs Glr & Gsm 

 

Subtest departure from 

publisher’s theory 

 

Arithmetic and all Gf & 

Gv subtests  

  

9 of 18 subtests 

  

Gestalt Closure on Gc not 

Gv; Hand Movements and 

Pattern Reasoning cross 

load 

  

Verbal Comprehension cross 

loads Gf  

 

 

Note. S2 = variance explained, h2 = communality, u2 = uniqueness, ωH = Omega-hierarchical (general factor), ωHS = Omega-hierarchical subscale 

(group factors), H = construct reliability or replicability index, PUC = percentage of uncontaminated correlations. 

 

 


